Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T22:58:56.301Z Has data issue: false hasContentIssue false

Inégalités variationnellesnon convexes

Published online by Cambridge University Press:  15 September 2005

Messaoud Bounkhel
Affiliation:
King Saud University, College of Science, Department of Mathematics, PO Box 2455, Riyadh 11451, Saudi Arabia; bounkhel@ksu.edu.sa
Djalel Bounkhel
Affiliation:
University of Jijel, Department of Mathematics, BP 98, Ouled Aissa, Jijel, Algeria; bounkheldjalel@yahoo.fr
Get access

Abstract

Dans cet article nous proposonsdifférents algorithmes pour résoudre une nouvelle classe deproblèmes variationels non convexes. Cette classe généraliseplusieurs types d'inégalités variationnelles (Cho etal. (2000), Noor (1992), Zeng (1998), Stampacchia(1964)) du cas convexe au cas non convexe. La sensibilitéde cette classe de problèmes variationnels non convexes a été aussi étudiée.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

M. Bounkhel, L. Tadj and A. Hamdi, Iterative Schemes to Solve Non convex Variational Problems. J. Ineq. Pure Appl. Math. 4 (2003), Article 14.
Bounkhel, M. and Thibault, L., On various notions of regularity of sets in non smooth analysis. Nonlinear Anal. Theory Methods Appl. 48 (2002) 223246. CrossRef
M. Bounkhel and L. Thibault, Further characterizations of regular sets in Hilbert spaces and their applications to nonconvex sweeping process. Preprint, Centro de Modelamiento Matematico (CMM), Universidad de Chile (2000). Submitted to J. Nonlinear Convex Anal.
C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions. Lect. Notes Math. 580 (1977).
Y.J. Cho, Z. He, Y.F. Cao and N.J. Huang, On the generalized strongly nonlinear implicit quasivariational inequalities for set-valued mappings. J. Ineq. Pure Appl. Math. 1 (2000), Article 15.
F.H. Clarke, Optimization and Nonsmooth Analysis. Wiley-Interscience, New York (1983).
Clarke, F.H., Stern, R.J. and Wolenski, P.R., Proximal smoothness and the lower C 2-property. J. Convex Anal. 2 (1995) 117144.
F.H. Clarke, Yu.S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth Analysis and Control Theory. Springer-Verlag, New York (1998).
Noor, M.A., General algorithm for variational inequalities. J. Optim. Theory Appl. 73 (1992) 409413. CrossRef
Panagiotopoulos, P.D. and Stavroulakis, G.E., New types of variational principles based on the notion of quasidifferentiability. Acta Mech. 94 (1992) 171194. CrossRef
Poliquin, R.A., Rockafellar, R.T. and Thibault, L., Local differentiability of distance functions. Trans. Amer. Math. Soc. 352 (2000) 52315249. CrossRef
R.T. Rockafellar and R. Wets, Variational Analysis. Springer-Verlag, Berlin (1998).
Stampacchia, G., Formes bilin 'eaires coercives sur les ensembles convexes. C. R. Acad. Sci. Paris 258 (1964) 44134416.
Zeng, L.C., On a general projection algorithm for variational inequalities. J. Optim. Theory Appl. 97 (1998) 229235. CrossRef