We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
Article purchase
Temporarily unavailable
References
[1]
Avellaneda, M., Bardos, C. and Rauch, J., Contrôlabilité exacte, homogénéisation et localisation d'ondes dans un milieu non-homogène. Asymptot. Anal.5 (1992) 481-484.
[2]
Allaire, G. and Conca, C., Bloch wave homogenization and spectral asymptotic analysis. J. Math. Pures Appl.77 (1998) 153-208.
CrossRef
[3]
N. Burq and G. Lebeau, Mesures de défaut de compacité; applications au système de Lamé, preprint.
[4]
Bardos, C., Lebeau, G. and Rauch, J., Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim.30 (1992) 1024-1075.
CrossRef
[5]
C. Castro, Boundary controllability of the one dimensional wave equation with rapidly oscillating density, preprint.
[6]
Castro, C. and Zuazua, E., Contrôle de l'équation des ondes à densité rapidement oscillante à une dimension d'espace. C. R. Acad. Sci. Paris324 (1997) 1237-1242.
CrossRef
[7]
P. Gérard, Mesures semi-classiques et ondes de Bloch, Séminaire X EDP, exposé 16 (1991).
[8]
Gérard, P. and Leichtnam, E., Ergodic properties of eigenfunctions for the Dirichlet problem. Duke Math. J.71 (1993) 559-607.
CrossRef
[9]
Lebeau, G., Contrôle de l'équation de Schrödinger. J. Math. Pures Appl.71 (1993) 267-291.
[10]
G. Lebeau, Équation des ondes amorties, Algebraic and Geometric Methods in Mathematical Physics, A. Boutet de Monvel and V. Marchenko, Eds. Kluwer Academic Publishers (1996) 73-109.
[11]
R. Melrose and J. Sjöstrand, Singularities of boundary value problems I, II. Comm. Pure Appl. Math. 31 (1978) 593-617; 35 (1982) 129-168.