Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T01:19:51.415Z Has data issue: false hasContentIssue false

Stability and sensitivity analysis for optimal control problems with a first-order state constraintand application to continuation methods

Published online by Cambridge University Press:  07 February 2008

Joseph Frédéric Bonnans
Affiliation:
INRIA Saclay and Centre de Mathématiques Appliquées, École Polytechnique, 91128 Palaiseau, France; Frederic.Bonnans@inria.fr; hermant@cmap.polytechnique.fr
Audrey Hermant
Affiliation:
INRIA Saclay and Centre de Mathématiques Appliquées, École Polytechnique, 91128 Palaiseau, France; Frederic.Bonnans@inria.fr; hermant@cmap.polytechnique.fr
Get access

Abstract

The paper deals with an optimal control problem with a scalar first-order state constraint and a scalar control.In presence of (nonessential) touch points,the arc structure of the trajectory is not stable.Under some reasonable assumptions,we show that boundary arcs are structurally stable, and that touch point can either remain so, vanish or be transformed into a single boundary arc. Assuming a weak second-order optimality condition (equivalent to uniform quadratic growth), stability and sensitivity results are given. The main tools are the study of a quadratic tangent problem and the notion of strong regularity.Those results enable us to design a new continuation algorithm,presented at the end of the paper, that handles automatically changes in the structure of the trajectory.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

E.L. Allgower and K. Georg, Numerical continuation methods, Springer Series in Computational Mathematics 13. Springer-Verlag, Berlin (1990).
L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York (2000).
Berkmann, P. and Pesch, H.J., Abort landing in windshear: optimal control problem with third-order state constraint and varied switching structure. J. Optim. Theory Appl. 85 (1995) 2157. CrossRef
Bonnans, J.F. and Hermant, A., Conditions d'optimalité du second ordre nécessaires ou suffisantes pour les problèmes de commande optimale avec une contrainte sur l'état et une commande scalaires. C. R. Math. Acad. Sci. Paris 343 (2006) 473478. CrossRef
J.F. Bonnans and A. Hermant, Second-order analysis for optimal control problems with pure state constraints and mixed control-state constraints. Ann. Inst. H. Poincaré Anal. Non Linéaire (to appear).
Bonnans, J.F. and Hermant, A., Well-posedness of the shooting algorithm for state constrained optimal control problems with a single constraint and control. SIAM J. Control Optim. 46 (2007) 13981430. CrossRef
J.F. Bonnans and A. Hermant, No gap second order optimality conditions for optimal control problems with a single state constraint and control. Math. Programming, Ser. B (2007) DOI: 10.1007/s10107-007-0167-8.
J.F. Bonnans and A. Shapiro, Perturbation analysis of optimization problems. Springer-Verlag, New York (2000).
Bryson, A.E., Denham, W.F. and Dreyfus, S.E., Optimal programming problems with inequality constraints I: Necessary conditions for extremal solutions. AIAA Journal 1 (1963) 25442550. CrossRef
Bulirsch, R., Montrone, F. and Pesch, H.J., Abort landing in the presence of windshear as a minimax optimal control problem. II. Multiple shooting and homotopy. J. Optim. Theory Appl. 70 (1991) 223254. CrossRef
P. Deuflhard, Newton methods for nonlinear problems, Affine invariance and adaptive algorithms, Springer Series in Computational Mathematics 35. Springer-Verlag, Berlin (2004).
Dontchev, A.L. and Hager, W.W., Lipschitzian stability for state constrained nonlinear optimal control. SIAM J. Control Optim. 36 (1998) 698718 (electronic). CrossRef
N. Dunford and J. Schwartz, Linear operators, Vols. I and II. Interscience, New York (1958), (1963).
Gergaud, J. and Haberkorn, T., Homotopy method for minimum consumption orbit transfer problem. ESAIM: COCV 12 (2006) 294310 (electronic). CrossRef
Hager, W.W., Lipschitz continuity for constrained processes. SIAM J. Control Optim. 17 (1979) 321338. CrossRef
Haraux, A., How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities. J. Math. Soc. Japan 29 (1977) 615631. CrossRef
Hartl, R.F., Sethi, S.P. and Vickson, R.G., A survey of the maximum principles for optimal control problems with state constraints. SIAM Review 37 (1995) 181218. CrossRef
A.D. Ioffe and V.M. Tihomirov, Theory of Extremal Problems. North-Holland Publishing Company, Amsterdam (1979). Russian Edition: Nauka, Moscow (1974).
Jacobson, D.H., Lele, M.M. and Speyer, J.L., New necessary conditions of optimality for control problems with state-variable inequality contraints. J. Math. Anal. Appl. 35 (1971) 255284. CrossRef
Malanowski, K., Two-norm approach in stability and sensitivity analysis of optimization and optimal control problems. Adv. Math. Sci. Appl. 2 (1993) 397443.
Malanowski, K., Stability and sensitivity of solutions to nonlinear optimal control problems. J. Appl. Math. Optim. 32 (1995) 111141. CrossRef
Malanowski, K., Sufficient optimality conditions for optimal control subject to state constraints. SIAM J. Control Optim. 35 (1997) 205227. CrossRef
Malanowski, K. and Maurer, H., Sensitivity analysis for state constrained optimal control problems. Discrete Contin. Dynam. Systems 4 (1998) 241272.
P. Martinon and J. Gergaud, An application of PL continuation methods to singular arcs problems, in Recent advances in optimization, Lect. Notes Econom. Math. Systems 563, Springer, Berlin (2006) 163–186.
H. Maurer, On the minimum principle for optimal control problems with state constraints. Schriftenreihe des Rechenzentrum 41, Universität Münster (1979).
Maurer, H. and Pesch, H.J., Solution differentiability for nonlinear parametric control problems. SIAM J. Control Optim. 32 (1994) 15421554. CrossRef
Mignot, F., Contrôle dans les inéquations variationnelles elliptiques. J. Funct. Anal. 22 (1976) 130185. CrossRef
L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, The mathematical theory of optimal processes. Translated from the Russian by K.N. Trirogoff; L.W. Neustadt Ed., Interscience Publishers John Wiley & Sons, Inc. New York-London (1962).
Robinson, S.M., First order conditions for general nonlinear optimization. SIAM J. Appl. Math. 30 (1976) 597607. CrossRef
Robinson, S.M., Stability theorems for systems of inequalities, part II: Differentiable nonlinear systems. SIAM J. Numer. Anal. 13 (1976) 497513. CrossRef
Robinson, S.M., Strongly regular generalized equations. Math. Oper. Res. 5 (1980) 4362. CrossRef
Sokolowski, J., Sensitivity analysis of control constrained optimal control problems for distributed parameter systems. SIAM J. Control Optim. 25 (1987) 15421556. CrossRef
J. Stoer and R. Bulirsch, Introduction to Numerical Analysis. Springer-Verlag, New York (1993).