Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T23:48:52.519Z Has data issue: false hasContentIssue false

Control of underwater vehicles in inviscid fluids

I. Irrotational flows

Published online by Cambridge University Press:  27 May 2014

Rodrigo Lecaros
Affiliation:
Centro de Modelamiento Matemático (CMM) and Departamento de Ingeniería Matemática, Universidad de Chile (UMI CNRS 2807), Avenida Blanco Encalada 2120, Casilla 170-3, Correo 3, Santiago, Chile. rlecaros@dim.uchile.cl Basque Center for Applied Mathematics – BCAM, Mazarredo 14, 48009 Bilbao, Basque Country, Spain; rlecaros@bcamath.org
Lionel Rosier
Affiliation:
Institut Elie Cartan, UMR 7502 UdL/CNRS/INRIA, B.P. 70239, 54506 Vandœuvre-lès-Nancy Cedex, France; Lionel.Rosier@univ-lorraine.fr
Get access

Abstract

In this paper, we investigate the controllability of an underwater vehicle immersed in an infinite volume of an inviscid fluid whose flow is assumed to be irrotational. Taking as control input the flow of the fluid through a part of the boundary of the rigid body, we obtain a finite-dimensional system similar to Kirchhoff laws in which the control input appears through both linear terms (with time derivative) and bilinear terms. Applying Coron’s return method, we establish some local controllability results for the position and velocities of the underwater vehicle. Examples with six, four, or only three controls inputs are given for a vehicle with an ellipsoidal shape.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

S.L. Altmann, Rotations, quaternions, and double groups. Oxford Science Publications. The Clarendon Press Oxford University Press, New York (1986).
Astolfi, A., Chhabra, D. and Ortega, R., Asymptotic stabilization of some equilibria of an underactuated underwater vehicle. Systems Control Lett. 45 (2002) 193206. Google Scholar
Bloch, A.M., Krishnaprasad, P.S., J.E. Marsden and G. Sánchez de Alvarez, Stabilization of rigid body dynamics by internal and external torques. Automatica J. IFAC 28 (1992) 745756. Google Scholar
Chambrion, T. and Sigalotti, M., Tracking control for an ellipsoidal submarine driven by Kirchhoff’s laws. IEEE Trans. Automat. Control 53 (2008) 339349. Google Scholar
Conca, C., Cumsille, P., Ortega, J. and Rosier, L., On the detection of a moving obstacle in an ideal fluid by a boundary measurement. Inverse Problems 24 (2008) 045001, 18. Google Scholar
Conca, C., Malik, M. and Munnier, A., Detection of a moving rigid body in a perfect fluid. Inverse Problems 26 (2010) 095010. Google Scholar
Coron, J.-M., On the controllability of 2-D incompressible perfect fluids. J. Math. Pures Appl. 75 (1996) 155188. Google Scholar
J.-M. Coron, Control and nonlinearity, vol. 136. Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2007).
T.I. Fossen, Guidance and Control of Ocean Vehicles. Wiley, New York (1994).
Fossen, T.I., A nonlinear unified state-space model for ship maneuvering and control in a seaway. Int. J. Bifur. Chaos Appl. Sci. Engrg. 15 (2005) 27172746. Google Scholar
Glass, O., Exact boundary controllability of 3-D Euler equation. ESAIM: COCV 5 (2000) 144. Google Scholar
Glass, O. and Rosier, L., On the control of the motion of a boat. Math. Models Methods Appl. Sci. 23 (2013) 617670. Google Scholar
P. Hartman, Ordinary differential equations, 2nd edn. Birkhäuser Boston, Mass. (1982).
Judovič, V.I.. A two-dimensional non-stationary problem on the flow of an ideal incompressible fluid through a given region. Mat. Sb. (N.S.) 64 (1964) 562588. Google Scholar
Kazhikhov, A.V., Note on the formulation of the problem of flow through a bounded region using equations of perfect fluid. Prikl. Matem. Mekhan. 44 (1980) 947950. Google Scholar
Kikuchi, K., The existence and uniqueness of nonstationary ideal incompressible flow in exterior domains in R3. J. Math. Soc. Japan 38 (1986) 575598. Google Scholar
Krieg, M., Klein, P., Hodgkinson, R. and Mohseni, K., A hybrid class underwater vehicle: Bioinspired propulsion, embedded system, and acoustic communication and localization system. Marine Tech. Soc. J. 45 (2001) 153164. Google Scholar
H. Lamb, Hydrodynamics. Cambridge Mathematical Library, 6th edition. Cambridge University Press, Cambridge (1993). With a foreword by R.A. Caflisch [Russel E. Caflisch].
Leonard, N.E., Stability of a bottom-heavy underwater vehicle. Automatica J. IFAC 33 (1997) 331346. Google Scholar
Leonard, N.E. and Marsden, J.E., Stability and drift of underwater vehicle dynamics: mechanical systems with rigid motion symmetry. Phys. D 105 (1997) 130162. Google Scholar
Novikov, S.P. and Shmel’tser, I., Periodic solutions of Kirchhoff equations for the free motion of a rigid body in a fluid and the extended Lyusternik-Shnirel’man-Morse theory. I. Funktsional. Anal. i Prilozhen. 15 (1981) 5466. Google Scholar
Ortega, J.H., Rosier, L. and Takahashi, T., Classical solutions for the equations modelling the motion of a ball in a bidimensional incompressible perfect fluid. ESAIM: M2AN 39 (2005) 79108. Google Scholar
Ortega, J.H., Rosier, L. and Takahashi, T., On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid. Ann. Inst. Henri Poincaré Anal. Non Linéaire 24 (2007) 139165. Google Scholar
Rosier, C. and Rosier, L., Smooth solutions for the motion of a ball in an incompressible perfect fluid. J. Funct. Anal. 256 (2009) 16181641. Google Scholar
E.D. Sontag, Mathematical control theory, vol. 6. Texts in Applied Mathematics. Springer-Verlag, New York (1990). Deterministic finite-dimensional systems.
B.L. Stevens and F.L. Lewis, Aircraft Control and Simulation. John Wiley & Sons, Inc., Hoboken, New Jersey (2003).
Wang, Y. and Zang, A., Smooth solutions for motion of a rigid body of general form in an incompressible perfect fluid. J. Differ. Eqs. 252 (2012) 42594288. Google Scholar
Y. Xu, Z. Ren and K. Mohseni, Lateral line inspired pressure feedforward for autonomous underwater vehicle control. In Proc. of IEEE/RSJ IROS Workshop Robot. Environmental Monitor (2012) 1–6.