Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T03:46:30.551Z Has data issue: false hasContentIssue false

Topological rigidity of strong stable foliations for Cartan actions

Published online by Cambridge University Press:  19 September 2008

Steven Hurder
Affiliation:
Department of Mathematics (mc/249), University of Illinois at Chicago, 851 S. Morgan St, Chicago, IL 60607 - 7045, USA

Abstract

We show that the strongest stable foliations associated with the generators of a Cartan action on a compact infra-nilmanifold are invaraint under topological conjugacy. This has the corollary that a Cartan action on a compact infra-nilmanifold with constant exponents is smoothly conjugate to an affine action.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Anosov, D. V.. Geodesic flows on closed Riemannian manifolds with negative curvature. Proc. Steklov. lnst. Math. 90 (1967), Amer. Math. Soc. 1969.Google Scholar
[2]Auslander, L., Green, L. & Hahn, F.. Flows on Homogeneous Spaces. Princeton University Press: Princeton, NJ, 1963.CrossRefGoogle Scholar
[3]Auslander, L. & Scheuneman, J.. On certain automorphisms of nilpotent Lie groups. In Global Analysis pp 915. Providence, RI, 1971. Amer. Math. Soc. Proc. Symp. Pure Math. 14.Google Scholar
[4]Dani, S. G.. Nilmanifolds with Anosov automorphisms. J. London Math. Soc. 18 (1978), 553559.CrossRefGoogle Scholar
[5]Franks, J.. Anosov diffeomorphisms on tori. Trans. Amer. Math. Soc. 145 (1969) 117124.CrossRefGoogle Scholar
[6]Franks, J.. Anosov diffeomorphisms. In Global Analysis, pp 693. Providence, RI, 1971. Amer. Math. Soc. Proc. Symp. Pure Math. 14.Google Scholar
[7]Gromov, M.. Hyperbolic manifolds, groups and actions. In: Kra, I. and Maskit, B., eds. Riemann Surfaces and Related Topics, Stony Brook Conference 1978 Princeton University Press, Princeton, NJ, 1981. Ann. Math. Studies 97.Google Scholar
[8]Gromov, M.. Asymptotic invariants of infinite groups. 1992. IHES Preprint M/92/8. Cambridge University Press: Cambridge.Google Scholar
[9]Hancock, S. G.. Orbits of paths under hyperbolic toral automorphisms. In Dynamical Systems I—Warsaw, pp 9396. Société Mathématique de France: Paris, 1977. Astérisque No. 49.Google Scholar
[10]Hirsch, M. W.. On invariant subsets of hyperbolic sets. In: Haefliger, A. and Narasimhan, R., eds. Essays on Topology and Related Topics, pp 126135. Springer-Verlag: Berlin, 1970.CrossRefGoogle Scholar
[11]Hurder, S.. Exotic index theory for foliations. Preprint, 1992.Google Scholar
[12]Hurder, S.. Rigidity for Anosov actions of higher rank lattices. Ann. Math. 135 (1992), 361–10.CrossRefGoogle Scholar
[13]Hurder, S.. Affine Anosov actions. Mich. Math. J. 40 (1993), 561575.CrossRefGoogle Scholar
[14]Hurder, S. and Katok, A.. Ergodic theory and Weil measures for foliations. Ann. Math. 126 (1987), 221275.CrossRefGoogle Scholar
[15]Hurder, S. & Katok, A.. Differentiability, rigidity and Godbillon-Vey classes for Anosov flows. Publ. Math. Inst. Hautes Etudes Sci. 72 (1990), 564.CrossRefGoogle Scholar
[16]de la Llavé, R.. Smooth conjugacies and SRB measures for uniformly and non-uniformly hyperbolic systems. Comm. Math. Phys. (1992), IHES Preprint M/91/30.CrossRefGoogle Scholar
[17]de la Llavé, R., Marco, J. & Moriyon, R.. Canonical perturbation theory of Anosov systems and regularity results for Livsic cohomology equation. Ann. Math 123 (1986), 537612.CrossRefGoogle Scholar
[18]Mal'cev, A. I.. On a class of homogeneous spaces, Izv. Akad. Nauk. SSSR Ser. Mat. 13 (1949), 932.Google Scholar
English transl., Amer. Math. Soc. Transl. 9 (1962), 276307.Google Scholar
[19]Manning, A.. There are no new Anosov diffeomorphisms on tori. Amer. J. Math. 96 (1974), 422429.CrossRefGoogle Scholar
[20]Manning, A.. Toral automorphisms, topological entropy and the fundamental group. In Dynamical Systems II—Warsaw, pp 273281. Société Mathématique de France. Paris, 1977. Astérisque No. 50.Google Scholar
[21]Newhouse, S.. On codimension one Anosov diffeomorphisms. Amer. J. Math. 92 (1970), 761770.CrossRefGoogle Scholar
[22]Plante, J.. Foliations with measure-preserving holonomy. Ann. Math. 102 (1975), 327361.CrossRefGoogle Scholar
[23]Qian, N.. Rigidity phenomenon of group actions on a class of nilmanifolds and Anosov actions. PhD thesis, California Institute of Technology, 1992.Google Scholar
[24]Ruelle, D. & Sullivan, D.. Currents, flows and diffeomorphisms. Topology 14 (1975), 319327.CrossRefGoogle Scholar
[25]Schwartzman, S.. Asymptotic cycles. Ann. Math. 66 (1957), 270284.CrossRefGoogle Scholar
[26]Shub, M.. Global Stability of Dynamical Systems. Springer-Verlag: New York and Berlin, 1987.CrossRefGoogle Scholar
[27]Smale, S.. Differentiable dynamical systems. Bull. Amer. Math. Soc. 73 (1967), 747817.CrossRefGoogle Scholar