Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T10:00:19.410Z Has data issue: false hasContentIssue false

Topological and geometric hyperbolicity criteria for polynomial automorphisms of ${\mathbb {C}^2}$

Published online by Cambridge University Press:  04 May 2021

ERIC BEDFORD
Affiliation:
Institute for Mathematical Sciences, Stony Brook University, Stony Brook, NY11794, USA (e-mail: ebedford@math.stonybrook.edu)
ROMAIN DUJARDIN*
Affiliation:
Sorbonne Université, CNRS, Laboratoire de Probabilités, Statistiques et Modélisations (LPSM), F-75005Paris, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove that uniform hyperbolicity is invariant under topological conjugacy for dissipative polynomial automorphisms of $\mathbb {C}^2$ . Along the way we also show that a sufficient condition for hyperbolicity is that local stable and unstable manifolds of saddle points have uniform geometry.

Type
Original Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2021. Published by Cambridge University Press

References

Berger, P. and Dujardin, R.. On stability and hyperbolicity for polynomial automorphisms of ${\mathbb{C}}^2$ . Ann. Sci. Éc. Norm. Supér. 50(4) (2017), 449477.CrossRefGoogle Scholar
Bonatti, C. and Díaz, L. and Vuillemin, F.. Cubic tangencies and hyperbolic diffeomorphisms. Bull. Braz. Math. Soc. (N.S.) 29(1) (1998), 99144.CrossRefGoogle Scholar
Bochi, J. and Gourmelon, N.. Some characterizations of domination. Math. Z. 263(1) (2009), 221231.CrossRefGoogle Scholar
Bedford, E., Guerini, L. and Smillie, J.. Hyperbolicity and quasi-hyperbolicity in polynomial diffeomorphisms of ${\mathbb{C}}^2$ . Preprint, 2020, arxiv:1601.06268.Google Scholar
Bedford, E., Lyubich, M. and Smillie, J.. Polynomial diffeomorphisms of ${\mathbb{C}}^2$ . IV. The measure of maximal entropy and laminar currents. Invent. Math. 112 (1993), 77125.CrossRefGoogle Scholar
Bedford, E., Lyubich, M. and Smillie, J.. Distribution of periodic points of polynomial diffeomorphisms of ${\mathbb{C}}^2$ . Invent. Math. 114 (1993), 277288.CrossRefGoogle Scholar
Bedford, E. and Smillie, J.. Polynomial diffeomorphisms of ${\mathbb{C}}^2$ : currents, equilibrium measure and hyperbolicity. Invent. Math. 103 (1991), 6999.CrossRefGoogle Scholar
Bedford, E. and Smillie, J.. Polynomial diffeomorphisms of ${\mathbb{C}}^2$ . II: Stable manifolds and recurrence. J. Amer. Math. Soc. 4 (1991), 657679.Google Scholar
Bedford, E. and Smillie, J.. Polynomial diffeomorphisms of ${\mathbb{C}}^2$ . VIII: Quasi-expansion. Amer. J. Math. 124 (2002), 221271.CrossRefGoogle Scholar
Dujardin, R.. A closing lemma for polynomial automorphisms of ${\mathbb{C}}^2$ . Astérisque 415 (2020), 3543. Quelques aspects de la théorie des systèmes dynamiques: un hommage à Jean-Christophe Yoccoz. I.CrossRefGoogle Scholar
Dujardin, R.. Saddle hyperbolicity implies hyperbolicity for polynomial automorphisms of ${\mathbb{C}}^2$ . Math. Res. Lett. 27 (2020), 693709 CrossRefGoogle Scholar
Enrich, H.. A heteroclinic bifurcation of Anosov diffeomorphisms. Ergod. Th. & Dynam. Sys. 18(3) (1998), 567608.CrossRefGoogle Scholar
Fisher, T.. Some results in hyperbolic dynamics. PhD Thesis, Penn. State, 2006.Google Scholar
Fathi, A., Herman, M. R. and Yoccoz, J.-C.. A proof of Pesin’s stable manifold theorem. Geometric Dynamics (Rio de Janeiro, 1981) (Lecture Notes in Mathematics, 1007). Springer, Berlin, 1983, pp. 177215.CrossRefGoogle Scholar
Firsova, T., Lyubich, M., Radu, R. and Tanase, R.. Hedgehogs for neutral dissipative germs of holomorphic diffeomorphisms of $({\mathbb{C}}^2,0)$ . Astérisque 416 (2020), 193211. Quelques aspects de la théorie des systèmes dynamiques: un hommage à Jean-Christophe Yoccoz.II.CrossRefGoogle Scholar
Friedland, S. and Milnor, J.. Dynamical properties of plane polynomial automorphisms. Ergod. Th. & Dynam. Sys. 9(1) (1989), 6799.CrossRefGoogle Scholar
Ghys, É.. Laminations par surfaces de Riemann. Dynamique et géométrie complexes (Lyon, 1997) (Panoramas et Synthèses, 8). Société Mathématique de France, Paris, 1999, pp. ix, xi, 4995.Google Scholar
Gogolev, A.. Diffeomorphisms Hölder conjugate to Anosov diffeomorphisms. Ergod. Th. & Dynam. Sys. 30(2) (2010), 441456.CrossRefGoogle Scholar
Guerini, L. and Peters, H.. Julia sets of complex Hénon maps. Internat. J. Math. 29(7) (2018), 1850047, 22.CrossRefGoogle Scholar
Hubbard, J. H. and Oberste-Vorth, R. W.. Hénon mappings in the complex domain. II. Projective and inductive limits of polynomials. Real and Complex Dynamical Systems (NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, 464). Kluwer Academic Publishers, Dordrecht, 1995, pp. 89132.CrossRefGoogle Scholar
Ishii, Y.. Hyperbolic polynomial diffeomorphisms of ${\mathbb{C}}^2$ . I. A non-planar map. Adv. Math. 218(2) (2008), 417464.CrossRefGoogle Scholar
Ishii, Y.. Dynamics of polynomial diffeomorphisms of ${\mathbb{C}}^2$ : combinatorial and topological aspects. Arnold Math. J. 3 (2017), 119173.CrossRefGoogle Scholar
Ishii, Y. and Smillie, J.. Homotopy shadowing. Amer. J. Math. 132(4) (2010), 9871029.CrossRefGoogle Scholar
Katok, A.. Bernoulli diffeomorphisms on surfaces. Ann. of Math. (2) 110(3) (1979), 529547.CrossRefGoogle Scholar
Katok, A. and Mendoza, L.. Dynamical systems with non-uniformly hyperbolic behavior. Appendix to Introduction to the Modern Theory of Dynamical Systems (Encyclopedia of Mathematics and its Applications, 54). Cambridge University Press, Cambridge, 1995.CrossRefGoogle Scholar
Lyubich, M. and Minsky, Y.. Laminations in holomorphic dynamics. J. Differential Geom. 47 (1997), 1794.CrossRefGoogle Scholar
Lyubich, M. and Peters, H.. Structure of partially hyperbolic Hénon maps. Preprint, 2017, arxiv:1712.05823, J. Eur. Math. Soc. to appear.Google Scholar
Lyubich, M., Radu, R. and Tanase, R.. Hedgehogs in higher dimension and their applications. Astérisque 416 (2020), 213251. Quelques aspects de la théorie des systèmes dynamiques: un hommage à Jean-Christophe Yoccoz. II.CrossRefGoogle Scholar
Mañé, R., Sad, P. and Sullivan, D.. On the dynamics of rational maps. Ann. Sci. Éc. Norm. Supér. 16 (1983), 193217.CrossRefGoogle Scholar
Radu, R. and Tanase, R.. A structure theorem for semi-parabolic Hénon maps. Adv. Math. 350 (2019), 10001058.CrossRefGoogle Scholar
Sambarino, M.. A (short) survey on dominated splittings. Mathematical Congress of the Americas (Contemporary Mathematics, 656). American Mathematical Society, Providence, RI, 2016, pp. 149183.CrossRefGoogle Scholar
Ueda, T.. Local structure of analytic transformations of two complex variables. I. J. Math. Kyoto Univ. 26(2) (1986), 233261 Google Scholar
Yoccoz, J.-C.. Some questions and remarks about $SL(2,\mathbb{R})$ cocycles. Modern Dynamical Systems and Applications. Cambridge University Press, Cambridge, 2004, pp. 447458.Google Scholar