Hostname: page-component-76c49bb84f-bg8zk Total loading time: 0 Render date: 2025-07-13T14:36:13.179Z Has data issue: false hasContentIssue false

Sub-additivity of measure theoretic entropies of commuting transformations on Banach spaces

Published online by Cambridge University Press:  10 July 2025

CHIYI LUO
Affiliation:
School of Mathematics and Statistics, Jiangxi Normal University, Nanchang 330022, Jiangxi, P.R. China (e-mail: luochiyi98@gmail.com)
YUN ZHAO*
Affiliation:
Center for Dynamical Systems and Differential Equations, https://ror.org/05t8y2r12School of Mathematical Sciences, Soochow University, Suzhou 215006, Jiangsu, P.R. China

Abstract

This paper considers two commuting smooth transformations on a Banach space and proves the sub-additivity of the measure theoretic entropies under mild conditions. Furthermore, some additional conditions are given for the equality of the entropies. This extends Hu’s work [Some ergodic properties of commuting diffeomorphisms. Ergod. Th. & Dynam. Sys. 13(1) (1993), 73–100] about commuting diffeomorphisms in a finite dimensional space to the case of systems on an infinite dimensional Banach space.

Information

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Backes, L. and Dragičević, D.. Periodic approximation of exceptional Lyapunov exponents for semi-invertible operator cocycles. Ann. Acad. Sci. Fenn. Math. 44(1) (2019), 183209.10.5186/aasfm.2019.4410CrossRefGoogle Scholar
Blumenthal, A. and Young, L.-S.. Absolute continuity of stable foliations for mappings of Banach spaces. Comm. Math. Phys. 354(2) (2017), 591619.10.1007/s00220-017-2912-zCrossRefGoogle Scholar
Blumenthal, A. and Young, L.-S.. Entropy, volume growth and SRB measures for Banach space mappings. Invent. Math. 207(2) (2017), 833893.10.1007/s00222-016-0678-0CrossRefGoogle Scholar
Brin, M. and Katok, A.. On local entropy. Geometric Dynamics (Rio de Janeiro, 1981) (Lecture Notes in Mathematics, 1007). Ed. J. Palis. Springer, Berlin, 1983, pp. 3038.10.1007/BFb0061408CrossRefGoogle Scholar
Dragičević, D. and Froyland, G.. Hölder continuity of Oseledets splittings for semi-invertible operator cocycles. Ergod. Th. & Dynam. Sys. 38(3) (2018), 961981.10.1017/etds.2016.55CrossRefGoogle Scholar
González-Tokman, C. and Quas, A.. A semi-invertible operator Oseledets theorem. Ergod. Th. & Dynam. Sys. 34(4) (2014), 12301272.10.1017/etds.2012.189CrossRefGoogle Scholar
Hu, H.. Some ergodic properties of commuting diffeomorphisms. Ergod. Th. & Dynam. Sys. 13(1) (1993), 73100.10.1017/S0143385700007215CrossRefGoogle Scholar
Katok, A.. Lyapunov exponents, entropy and periodic orbits for diffeomorphisms. Publ. Math. Inst. Hautes Études Sci. 51 (1980), 137173.10.1007/BF02684777CrossRefGoogle Scholar
Kupka, J. and Prikry, K.. The measurability of uncountable unions. Amer. Math. Monthly, 91(2) (1984), 8597.10.1080/00029890.1984.11971346CrossRefGoogle Scholar
Ledrappier, F. and Young, L.-S.. The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula. Ann. of Math. (2) 122(3) (1985), 509539.10.2307/1971328CrossRefGoogle Scholar
Li, Z. and Shu, L.. The metric entropy of random dynamical systems in a Banach space: Ruelle inequality. Ergod. Th. & Dynam. Sys. 34(2) (2014), 594615.10.1017/etds.2012.138CrossRefGoogle Scholar
Li, Z. and Zhu, Y.. Entropies of commuting transformations on Hilbert spaces. Discrete Contin. Dyn. Syst. 40(10) (2020), 57955814.10.3934/dcds.2020246CrossRefGoogle Scholar
Lian, Z., Liu, P. and Lu, K.. SRB measures for a class of partially hyperbolic attractors in Hilbert spaces. J. Differential Equations 261(2) (2016), 15321603.10.1016/j.jde.2016.04.006CrossRefGoogle Scholar
Lian, Z. and Lu, K.. Lyapunov exponents and invariant manifolds for random dynamical systems in a Banach space. Mem. Amer. Math. Soc. 206(967) (2010), vi+106.Google Scholar
Lian, Z. and Ma, X.. Existence of periodic orbits and horseshoes for mappings in a separable Banach space. J. Differential Equations 269(12) (2020), 1169411738.10.1016/j.jde.2020.08.004CrossRefGoogle Scholar
Lian, Z. and Young, L.-S.. Lyapunov exponents, periodic orbits and horseshoes for mappings of Hilbert spaces. Ann. Henri Poincaré 12(6) (2011), 10811108.10.1007/s00023-011-0100-9CrossRefGoogle Scholar
Lian, Z. and Young, L.-S.. Lyapunov exponents, periodic orbits, and horseshoes for semiflows on Hilbert spaces. J. Amer. Math. Soc. 25(3) (2012), 637665.10.1090/S0894-0347-2012-00734-6CrossRefGoogle Scholar
Mañé, R.. On the dimension of the compact invariant sets of certain nonlinear maps. Dynamical Systems and Turbulence, Warwick 1980 (Coventry, 1979/1980) (Lecture Notes in Mathematics, 898). Ed. D. Rand and L.-S. Young. Springer, Berlin, 1981, pp. 230242.Google Scholar
Rohlin, V. A.. Lectures on the entropy theory of transformations with invariant measure. Uspekhi Mat. Nauk 22(5(137)) (1967), 356.Google Scholar
Ruelle, D.. Characteristic exponents and invariant manifolds in Hilbert space. Ann. of Math. (2) 115(2) (1982), 243290.10.2307/1971392CrossRefGoogle Scholar
Thieullen, P.. Fibrés dynamiques asymptotiquement compacts. Exposants de Lyapounov. Entropie. Dimension. Ann. Inst. H. Poincaré Anal. Non Linéaire 4(1) (1987), 4997.10.1016/s0294-1449(16)30373-0CrossRefGoogle Scholar
Varzaneh, M. G. and Riedel, S.. Oseledets splitting and invariant manifolds on fields of Banach spaces. J. Dynam. Differential Equations 35(1) (2023), 103133.10.1007/s10884-021-09969-1CrossRefGoogle Scholar
Walters, P.. An Introduction to Ergodic Theory (Graduate Texts in Mathematics, 79). Springer-Verlag, New York, 1982.10.1007/978-1-4612-5775-2CrossRefGoogle Scholar
Walters, P.. A dynamical proof of the multiplicative ergodic theorem. Trans. Amer. Math. Soc. 335(1) (1993), 245257.10.1090/S0002-9947-1993-1073779-7CrossRefGoogle Scholar
Zang, Y.. Entropies and volume growth of unstable manifolds. Ergod. Th. & Dynam. Sys. 42(4) (2022), 15761590.10.1017/etds.2021.2CrossRefGoogle Scholar