Published online by Cambridge University Press: 01 June 1999
Let $(X,\phi)$ be a hyperbolic dynamical system and let $(G,\delta)$ be a Polish group. Motivated by Nicol and Pollicott, and then by Parry we study conditions under which two Hölder maps $f,g: X\longrightarrow G$ are Hölder cohomologous.
In the context of Nicol and Pollicott we show that if $f$ and $g$ are measurably cohomologous and the distortion of the metric $\delta $ by the cocycles defined by $f$ and $g$ is bounded in an appropriate sense, then $f$ and $g$ are Hölder cohomologous.
Two further results extend the main theorems recently presented by Parry. Under the hypothesis of bounded distortion we show that, if $f$ and $g$ give equal weight to all periodic points of $\phi $, then $f$ and $g$ are Hölder cohomologous. If the metric $\delta $ is bi-invariant, and if the skew-product $\phi _f$ defined by $f$ is topologically transitive, then conjugacy of weights implies that $g$ is Hölder conjugate to $\alpha \cdot f$ for some isometric automorphism $\alpha $ of $G$. The weaker condition that $g$-weights of periodic points are close to the identity whenever their $f$-weights are close to the identity implies that $g$ is continuously cohomologous to a homomorphic image of $f$.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.