Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T04:00:01.376Z Has data issue: false hasContentIssue false

Prime number theorem for regular Toeplitz subshifts

Published online by Cambridge University Press:  15 February 2021

KRZYSZTOF FRĄCZEK*
Affiliation:
Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100Toruń, Poland
ADAM KANIGOWSKI
Affiliation:
Department of Mathematics, University of Maryland, 4176 Campus Drive, William E. Kirwan Hall, College Park, MD20742-4015, USA (e-mail: akanigow@umd.edu)
MARIUSZ LEMAŃCZYK
Affiliation:
Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100Toruń, Poland (e-mail: mlem@mat.umk.pl)

Abstract

We prove that neither a prime nor an l-almost prime number theorem holds in the class of regular Toeplitz subshifts. But when a quantitative strengthening of the regularity with respect to the periodic structure involving Euler’s totient function is assumed, then the two theorems hold.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

El Abdalaoui, H., Lemańczyk, M. and Kasjan, S.. 0-1 sequences of the Thue-Morse type and Sarnak’s conjecture. Proc. Amer. Math. Soc. 144 (2016), 161176.CrossRefGoogle Scholar
Boyle, M., Fiebig, D. and Fiebig, U.. Residual entropy, conditional entropy and subshift covers. Forum Math. 14 (2002), 713757.CrossRefGoogle Scholar
Bourgain, J.. An approach to pointwise ergodic theorems. Geometric Aspects of Functional Analysis (1986/87) (Lecture Notes in Mathematics, 1317). Springer, Berlin, 1988, pp. 204223.CrossRefGoogle Scholar
Bourgain, J.. Möbius-Walsh correlation bounds and an estimate of Mauduit and Rivat. J. Anal. Math. 119 (2013), 147163.CrossRefGoogle Scholar
Bourgain, J.. On the correlation of the Möbius function with rank-one systems. J. Anal. Math. 120 (2013), 105130.CrossRefGoogle Scholar
Downarowicz, T.. Survey of odometers and Toeplitz flows. Algebraic and Topological Dynamics (Contemporary Mathematics, 385). American Mathematical Society, Providence, RI, 2005, pp. 737.CrossRefGoogle Scholar
Ferenczi, S., Kułaga-Przymus, J. and Lemańczyk, M.. Sarnak’s conjecture – what’s new. Ergodic Theory and Dynamical Systems in their Interactions with Arithmetics and Combinatorics, CIRM Jean-Morlet Chair, Fall 2016 (Lecture Notes in Mathematics, 2213). Ed. Ferenczi, S., Kułaga-Przymus, J. and Lemańczyk, M.. Springer International Publishing, Cham, 2018.Google Scholar
Ferenczi, S. and Mauduit, C.. On Sarnak’s conjecture and Veech’s question for interval exchanges. J. Anal. Math. 134 (2018), 545573.CrossRefGoogle Scholar
Green, B.. On (not) computing the Möbius function using bounded depth circuits. Combin. Probab. Comput. 21 (2012), 942951.CrossRefGoogle Scholar
Green, B. and Tao, T.. The Möbius function is strongly orthogonal to nilsequences. Ann. of Math. 175(2), (2012), 541566.CrossRefGoogle Scholar
Kanigowski, A., Lemańczyk, M. and Radziwiłł, M.. Rigidity in dynamics and Möbius disjointness. Preprint, 2019, arXiv:1905.13256.Google Scholar
Kanigowski, A., Lemańczyk, M. and Radziwiłł, M.. Prime number theorem for analytic skew products. To appear in Fundamenta Math. Preprint, 2020, arXiv:2004.01125.Google Scholar
Kanigowski, A., Lemańczyk, M. and Radziwiłł, M.. Semiprime number theorem for smooth Anzai skew products, in preparation.Google Scholar
Landau, E.. Handbuch der Lehre von der Verteilung der Primzahlen (2 volumes, in German), 2nd edn. Chelsea Publishing Co., New York, 1953. With an appendix by P. T. Bateman.Google Scholar
Mauduit, C. and Rivat, J.. Prime numbers along Rudin–Shapiro sequences. J. Eur. Math. Soc. 17 (2015), 25952642.CrossRefGoogle Scholar
Müllner, C.. Automatic sequences fulfill the Sarnak conjecture. Duke Math. J. 166 (2017), 32193290.CrossRefGoogle Scholar
Narkiewicz, W.. Number Theory. World Scientific Publishing Co., Singapore, 1983. Translated from the Polish by S. Kanemitsu.Google Scholar
Pavlov, R.. Some counterexamples in topological dynamics. Ergod. Th. & Dynam. Sys. 28 (2008), 12911322.CrossRefGoogle Scholar
Sarnak, P.. Three lectures on the Möbius function, randomness and dynamics. IAS Lecture Notes, 2011, http://publications.ias.edu/sarnak/paper/506.Google Scholar
Sarnak, P.. Möbius randomness and dynamics six years later at CIRM at 1h 08 minute, 2017, https://library.cirm-math.fr/Record.htm?idlist=1&record=19282918124910001909.Google Scholar
Selberg, A.. An elementary proof of the prime-number theorem for arithmetic progressions. Canad. J. Math. 2 (1950), 6678.CrossRefGoogle Scholar
Vinogradov, I. M.. The method of trigonometrical sums in the theory of numbers. Trav. Inst. Math. Stekloff 23 (1947), 109 (in Russian).Google Scholar
Wierdl, M.. Pointwise ergodic theorem along the prime numbers. Israel J. Math. 64 (1989), 315336.CrossRefGoogle Scholar