Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T23:03:35.043Z Has data issue: false hasContentIssue false

Poincaré–Hopf and Morse inequalities for Lyapunov graphs

Published online by Cambridge University Press:  22 December 2004

M. A. BERTOLIM
Affiliation:
Instituto de Matemática, Estatística e Computação Científica, Universidade Estadual de Campinas, Campinas, SP, Brazil (e-mail: bertolim@ime.unicamp.br, margarid@ime.unicamp.br, ketty@ime.unicamp.br)
M. P. MELLO
Affiliation:
Instituto de Matemática, Estatística e Computação Científica, Universidade Estadual de Campinas, Campinas, SP, Brazil (e-mail: bertolim@ime.unicamp.br, margarid@ime.unicamp.br, ketty@ime.unicamp.br)
K. A. de REZENDE
Affiliation:
Instituto de Matemática, Estatística e Computação Científica, Universidade Estadual de Campinas, Campinas, SP, Brazil (e-mail: bertolim@ime.unicamp.br, margarid@ime.unicamp.br, ketty@ime.unicamp.br)

Abstract

Lyapunov graphs carry dynamical information of gradient-like flows as well as topological information of their phase space which is taken to be a closed orientable n-manifold. In this paper we will show that an abstract Lyapunov graph $L(h_0, \dotsc,h_n,\kappa)$ in dimension n greater than 2, with cycle number $\kappa$, satisfies the Poincaré–Hopf inequalities if and only if it satisfies the Morse inequalities and the first Betti number, $\gamma_1$, is greater than or equal to $\kappa$. We also show a continuation theorem for abstract Lyapunov graphs with the presence of cycles. Finally, a family of Lyapunov graphs $\mathcal{L}(h_0, \dotsc, h_n,\kappa)$ with fixed pre-assigned data $(h_0, \dotsc, h_n,\kappa)$ is associated with the Morse polytope, $\mathcal{P}_{\kappa}(h_0,\dotsc, h_n)$, determined by the Morse inequalities for the given data.

Type
Research Article
Copyright
2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)