Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T23:38:30.307Z Has data issue: false hasContentIssue false

On topological rank of factors of Cantor minimal systems

Published online by Cambridge University Press:  08 June 2021

NASSER GOLESTANI
Affiliation:
Department of Pure Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, P. O. Box 14115-134, Tehran, Iran School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5746, Tehran, Iran (e-mail: n.golestani@modares.ac.ir)
MARYAM HOSSEINI*
Affiliation:
School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5746, Tehran, Iran (e-mail: n.golestani@modares.ac.ir)

Abstract

A Cantor minimal system is of finite topological rank if it has a Bratteli–Vershik representation whose number of vertices per level is uniformly bounded. We prove that if the topological rank of a minimal dynamical system on a Cantor set is finite, then all its minimal Cantor factors have finite topological rank as well. This gives an affirmative answer to a question posed by Donoso, Durand, Maass, and Petite in full generality. As a consequence, we obtain the dichotomy of Downarowicz and Maass for Cantor factors of finite-rank Cantor minimal systems: they are either odometers or subshifts.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amini, M., Elliott, G. A. and Golestani, N.. The category of ordered Bratteli diagrams. Canad. J. Math. 73(1) (2021), 128.CrossRefGoogle Scholar
Berthe, V., Cecchi Bernales, P., Durand, F., Leroy, J., Perrin, D. and Petite, S.. On the dimension group of unimodular S-adic subshifts. Monatsh Math. 194 (2021), 687717.CrossRefGoogle Scholar
Berthe, V., Steiner, W., Thuswaldner, J. M. and Yassawi, R.. Recognizability for sequences of morphisms. Ergod. Th. & Dynam. Sys. 39(11) (2019), 28962931.CrossRefGoogle Scholar
Bezuglyi, S., Kwiatkowski, J., Medynets, K. and Solomyak, B.. Finite rank Bratteli diagrams: structure of invariant measures. Trans. Amer. Math. Soc. 365 (2013), 26372679.CrossRefGoogle Scholar
Cortez, M. I., Durand, F. and Petite, S.. Eigenvalues and strong orbit equivalence. Ergod. Th. & Dynam. Sys. 36 (2016), 24192440.CrossRefGoogle Scholar
Donoso, S., Durand, F., Maass, A. and Petite, S.. Interplay between finite topological rank minimal Cantor systems, S-adic subshifts and their complexity. Trans. Amer. Math. Soc. 374 (2021), 34533489.CrossRefGoogle Scholar
Downarowicz, T. and Maass, A.. Finite-rank Bratteli–Vershik diagrams are expansive. Ergod. Th. & Dynam. Sys. 28(3) (2008), 739747.CrossRefGoogle Scholar
Durand, F.. Linearly recurrent subshifts have a finite number of non-periodic subshift factors. Ergod. Th. & Dynam. Sys. 20 (2000) 10611078.CrossRefGoogle Scholar
Durand, F., Host, B. and Skau, C. F.. Substitutional dynamical systems, Bratteli diagrams and dimension groups. Ergod. Th. & Dynam. Sys. 19(4) (1999), 953993.CrossRefGoogle Scholar
Durand, F. and Leroy, J.. S-adic conjecture and Bratteli diagrams. C. R. Math. Acad. Sci. 350 (2012), 979983.CrossRefGoogle Scholar
Effros, E. G.. Dimensions and C*-Algebras (CBMS Regional Conference Series in Mathematics, 46). Conference Board of the Mathematical Sciences, Washington, DC, 1981.Google Scholar
Espinoza, B. A. C.. Contribucion al estudio de endomorphismos de sistemas dinamicos minimales de Cantor. Master Thesis, Universidad De Chile, 2020.Google Scholar
Espinoza, B. A. C.. On symbolic factors of S-adic subshifts of finite alphabet rank. Preprint, 2021, arXiv:2012.00715v2 [math.DS].CrossRefGoogle Scholar
Fine, N. J. and Wilf, H. S.. Uniqueness theorems for periodic functions. Proc. Amer. Math. Soc. 16 (1965), 109114.CrossRefGoogle Scholar
Giordano, T., Handelman, D. and Hosseini, M.. Orbit equivalence of Cantor minimal systems and their continuous spectra. Math. Z. 289 (2018), 11991218.CrossRefGoogle Scholar
Giordano, T., Putnuam, I. and Skau, C.. Topological orbit equivalence and C*-crossed product. J. Reine Angew. Math. 469 (1995), 51111.Google Scholar
Gjerde, R. and $\emptyset$ . Johansen. Bratteli–Vershik models for Cantor minimal systems: applications to Toeplitz flows. Ergod. Th. & Dynam. Sys. 20(6) (2000), 16871710.CrossRefGoogle Scholar
Gjerde, R. and $\emptyset$ . Johansen. Bratteli–Vershik models for Cantor minimal systems associated to interval exchange transformations. Math. Scand. 90(1) (2002), 87100.CrossRefGoogle Scholar
Glasner, E. and Weiss, B.. Weak orbit equivalence of Cantor minimal systems. Internat. J. Math. 6 (1995), 569579.CrossRefGoogle Scholar
Herman, R. H., Putnam, I. F. and Skau, C. F.. Ordered Bratteli diagrams, dimension groups and topological dynamics. Internat. J. Math. 3(6) (1992), 827864.CrossRefGoogle Scholar
Ornstein, D., Rudolph, D. and Weiss, B.. Equivalence of measure preserving transformations. Mem. Amer. Math. Soc. 37(262) (1982), xii+116.Google Scholar
Putnam, I. F.. C*-algebras associated with minimal homeomorphisms of the Cantor set. Pacific J. Math. 136(2) (1989), 329353.CrossRefGoogle Scholar
Sugisaki, F.. Almost one-to-one extensions of Cantor minimal systems and order embeddings of simple dimension groups . Münster J. Math. 4 (2011), 141169.Google Scholar