Hostname: page-component-cb9f654ff-qc88w Total loading time: 0 Render date: 2025-08-17T01:42:08.681Z Has data issue: false hasContentIssue false

On $C^r$-generic twist maps of $\mathrm {T^2}$

Published online by Cambridge University Press:  12 August 2025

SALVADOR ADDAS-ZANATA*
Affiliation:
https://ror.org/036rp1748 Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, Cidade Universitária, 05508-090 São Paulo, SP, Brazil

Abstract

We consider twist diffeomorphisms of the torus, $f:\mathrm {T^2\rightarrow T^2,}$ and their vertical rotation intervals, $\rho _V(\widehat {f})=[\rho _V^{-},\rho _V^{+}],$ where $\widehat {f}$ is a lift of f to the vertical annulus or cylinder. We show that $C^r$-generically, for any $r\geq 1$, both extremes of the rotation interval are rational and locally constant under $C^0$-perturbations of the map. Moreover, when f is area-preserving, $C^r$-generically, $\rho _V^{-}<\rho _V^{+}$. Also, for any twist map f, $\widehat {f}$ a lift of f to the cylinder, if $\rho _V^{-}<\rho _V^{+}=p/q$, then there are two possibilities: either $\widehat {f}^q(\bullet )-(0,p)$ maps a simple essential loop into the connected component of its complement which is below the loop, or it satisfies the curve intersection property. In the first case, $\rho _V^{+} \leq p/q$ in a $C^0$-neighborhood of $f,$ and in the second case, we show that $\rho _V^{+}(\widehat {f}+(0,t))>p/q$ for all $t>0$ (that is, the rotation interval is ready to grow). Finally, in the $C^r$-generic case, assuming that $\rho _V^{-}<\rho _V^{+}=p/q,$ we present some consequences of the existence of the free loop for $\widehat {f}^q(\bullet )-(0,p)$, related to the description and shape of the attractor–repeller pair that exists in the annulus. The case of a $C^r$-generic transitive twist diffeomorphism (if such a thing exists) is also investigated.

Information

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Addas-Zanata, S.. On the existence of a new type of periodic and quasi-periodic orbits for twist maps of the torus. Nonlinearity 15 (2002), 13991416.10.1088/0951-7715/15/5/303CrossRefGoogle Scholar
Addas-Zanata, S.. A note on a standard family of twist maps. Qual. Theory Dyn. Syst. 1 (2004), 19.10.1007/BF02968128CrossRefGoogle Scholar
Addas-Zanata, S.. On properties of the vertical rotation interval for twist mappings. Ergod. Th. & Dynam. Sys. 25 (2005), 641660.10.1017/S014338570400063XCrossRefGoogle Scholar
Addas-Zanata, S.. Some extensions of the Poincaré–Birkhoff theorem to the cylinder and a remark on mappings of the torus homotopic to Dehn twists. Nonlinearity 18 (2005), 22432260.10.1088/0951-7715/18/5/018CrossRefGoogle Scholar
Addas-Zanata, S.. Area preserving diffeomorphisms of the torus whose rotation sets have non empty interiors. Ergod. Th. & Dynam. Sys. 1 (2015), 133.10.1017/etds.2013.44CrossRefGoogle Scholar
Addas-Zanata, S.. A consequence of the growth of rotation sets for families of diffeomorphisms of the torus. Ergod. Th. & Dynam. Sys. 40 (2020), 14411458.10.1017/etds.2018.120CrossRefGoogle Scholar
Addas-Zanata, S., Garcia, B. and Tal, F.. On the dynamics of homeomorphisms of the torus homotopic to Dehn twists. Ergod. Th. & Dynam. Sys. 34 (2014), 409422.10.1017/etds.2012.156CrossRefGoogle Scholar
Addas-Zanata, S. and Koropecki, A.. Homotopically unbounded disks for generic surface diffeomorphisms. Trans. Amer. Math. Soc. 375 (2022), 58595888.10.1090/tran/8665CrossRefGoogle Scholar
Addas-Zanata, S. and Le Calvez, P.. Rational mode locking for homeomorphisms of the 2-torus. Proc. Amer. Math. Soc. 146 (2017), 15511570.10.1090/proc/13793CrossRefGoogle Scholar
Addas-Zanata, S. and Tal, F.. Mather’s regions of instability for annulus diffeomorphisms. Bull. Lond. Math. Soc. 56 (2024), 11291148.10.1112/blms.12985CrossRefGoogle Scholar
Doeff, E. and Misiurewicz, M.. Shear rotation numbers. Nonlinearity 10 (1997), 17551762.10.1088/0951-7715/10/6/017CrossRefGoogle Scholar
Doeff, H. E.. Rotation measures for homeomorphisms of the torus homotopic to a Dehn twist. Ergod. Th. & Dynam. Sys. 17 (1997), 575591.10.1017/S0143385797085015CrossRefGoogle Scholar
Dumortier, F., Rodrigues, P. and Roussarie, R.. Germs of Diffeomorphisms in the Plane (Lecture Notes in Mathematics, 902) (Springer-Verlag, Berlin–New York, 1981).10.1007/BFb0095812CrossRefGoogle Scholar
Franks, J.. Realizing rotation vectors for torus homeomorphisms. Trans. Amer. Math. Soc. 311 (1989), 107115.10.1090/S0002-9947-1989-0958891-1CrossRefGoogle Scholar
Katok, A. and Hasselblatt, B.. Introduction to Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge, 1995.10.1017/CBO9780511809187CrossRefGoogle Scholar
Koropecki, A., Le Calvez, P. and Nassiri, M.. Prime ends rotation numbers and periodic points. Duke Math. J. 164 (2015), 403472.10.1215/00127094-2861386CrossRefGoogle Scholar
Le Calvez, P.. Existence d’orbites quasi-périodiques dans les attracteurs de Birkhoff. Comm. Math. Phys. 106 (1986), 383394.10.1007/BF01207253CrossRefGoogle Scholar
Le Calvez, P.. Propriétés Dynamiques des Difféomorphismes de L’Anneau et du Tore. Astérisque 204 (1991), 3845.Google Scholar
Le Calvez, P.. Construction d’orbites périodiques par perturbation d’un difféomorphisme de l’anneau déviant la verticale. C. R. Math. Acad. Sci. Paris 321 (1995), 463468.Google Scholar
Llibre, J. and Mackay, R.. Rotation vectors and entropy for homeomorphisms of the torus isotopic to the identity. Ergod. Th. & Dynam. Sys. 11 (1991), 115128.10.1017/S0143385700006040CrossRefGoogle Scholar
Mather, J.. Invariant subsets of area-preserving homeomorphisms of surfaces. Adv. Math. Suppl. Studies 7B (1981), 531562.Google Scholar
Meyer, K.. Generic bifurcation of periodic points. Trans. Amer. Math. Soc. 149 (1970), 95107.10.1090/S0002-9947-1970-0259289-XCrossRefGoogle Scholar
Misiurewicz, M. and Ziemian, K.. Rotation sets for maps of Tori. J. Lond. Math. Soc. 40 (1989), 490506.10.1112/jlms/s2-40.3.490CrossRefGoogle Scholar
Pixton, D.. Planar homoclinic points. J. Differential Equations 44 (1982), 365382.10.1016/0022-0396(82)90002-XCrossRefGoogle Scholar
Zehnder, E.. Note on smoothing symplectic and volume preserving diffeomorphisms. Geometry and Topology (Lecture Notes in Mathematics, 597). Ed. J. Palis and M. do Carmo. (Springer, Berlin--New York, 1977), 828854.10.1007/BFb0085384CrossRefGoogle Scholar