Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T11:47:04.907Z Has data issue: false hasContentIssue false

The Hausdorff dimension of multiply Xiong chaotic sets

Published online by Cambridge University Press:  06 June 2019

JIAN LI
Affiliation:
Department of Mathematics, Shantou University, Shantou515063, Guangdong, China email lijian09@mail.ustc.edu.cn
JIE LÜ
Affiliation:
School of Mathematics, South China Normal University, Guangzhou510631, China email ljie@scnu.edu.cn
YUANFEN XIAO
Affiliation:
Department of Mathematics, University of Science and Technology of China, Hefei 230026, Anhui, China email xyuanfen@mail.ustc.edu.cn

Abstract

We construct a multiply Xiong chaotic set with full Hausdorff dimension everywhere that is contained in some multiply proximal cell for the full shift over finite symbols and the Gauss system, respectively.

Type
Original Article
Copyright
© Cambridge University Press, 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akin, E. and Kolyada, S.. Li–Yorke sensitivity. Nonlinearity 16(4) (2003), 14211433.10.1088/0951-7715/16/4/313CrossRefGoogle Scholar
Auslander, J.. On the proximal relation in topological dynamics. Proc. Amer. Math. Soc. 11 (1960), 890895.10.1090/S0002-9939-1960-0164335-7CrossRefGoogle Scholar
Balibrea, F. and López, V. J.. The measure of scrambled sets: a survey. Acta Univ. M. Belii Ser. Math. 7 (1999), 311.Google Scholar
Blanchard, F. and Huang, W.. Entropy sets, weakly mixing sets and entropy capacity. Discrete Contin. Dyn. Syst. 20(2) (2008), 275311.10.3934/dcds.2008.20.275CrossRefGoogle Scholar
Blanchard, F., Huang, W. and Snoha, L.. Topological size of scrambled sets. Colloq. Math. 110(2) (2008), 293361.10.4064/cm110-2-3CrossRefGoogle Scholar
Bruin, H. and López, V. J.. On the Lebesgue measure of Li–Yorke pairs for interval maps. Comm. Math. Phys. 299(2) (2010), 523560.10.1007/s00220-010-1085-9CrossRefGoogle Scholar
Falconer, K.. Fractal Geometry (Mathematical Foundations and Applications) , 3rd edn. John Wiley & Sons, Chichester, 2014.Google Scholar
Fang, C., Huang, W., Yi, Y. and Zhang, P.. Dimensions of stable sets and scrambled sets in positive finite entropy systems. Ergod. Th. & Dynam. Sys. 32(2) (2012), 599628.10.1017/S0143385710000982CrossRefGoogle Scholar
Hu, H. and Yu, Y.. On Schmidt’s game and the set of points with non-dense orbits under a class of expanding maps. J. Math. Anal. Appl. 418(2) (2014), 906920.10.1016/j.jmaa.2014.04.026CrossRefGoogle Scholar
Huang, W., Li, J., Ye, X. and Zhou, X.. Positive topological entropy and 𝛥-weakly mixing sets. Adv. Math. 306 (2017), 653683.10.1016/j.aim.2016.10.029CrossRefGoogle Scholar
Huang, W., Shao, S. and Ye, X.. Mixing and proximal cells along sequences. Nonlinearity 17(4) (2004), 12451260.10.1088/0951-7715/17/4/006CrossRefGoogle Scholar
Iosifescu, M. and Kraaikamp, C.. Metrical Theory of Continued Fractions (Mathematics and its Applications, 547) . Kluwer Academic Publishers, Dordrecht, 2002.10.1007/978-94-015-9940-5CrossRefGoogle Scholar
Jarník, V.. Zur metrischen Theorie der diophantischen Approximationen. Prace Matematyczno-Fizyczne 36(1) (1928), 91106.Google Scholar
Liu, K.. 𝛥-weakly mixing subset in positive entropy actions of a nilpotent group. J. Differential Equations 267 (2019), 525546.10.1016/j.jde.2019.01.018CrossRefGoogle Scholar
Liu, W. and Li, B.. Chaotic and topological properties of continued fractions. J. Number Theory 174 (2017), 369383.10.1016/j.jnt.2016.10.019CrossRefGoogle Scholar
Misiurewicz, M.. On Bowen’s definition of topological entropy. Discrete Contin. Dyn. Syst. Ser. A 10 (2004), 827833.10.3934/dcds.2004.10.827CrossRefGoogle Scholar
Rohlin, V. A.. Exact endomorphisms of a Lebesgue space. Izv. Akad. Nauk SSSR Ser. Mat. 25 (1961), 499530 (in Russian).Google Scholar
Wu, C. L. and Tan, F.. Hausdorff dimension of a chaotic set of shift in a countable symbolic space. J. South China Norm. Univ. Natur. Sci. Ed. 4 (2007), 1116 (in Chinese, with English and Chinese summaries).Google Scholar
Walters, P.. An Introduction to Ergodic Theory (Graduate Texts in Mathematics, 79) . Springer, New York, 1982.10.1007/978-1-4612-5775-2CrossRefGoogle Scholar
Wu, J.. A remark on the growth of the denominators of convergents. Monatsh. Math. 147(3) (2006), 259264.10.1007/s00605-005-0356-6CrossRefGoogle Scholar
Xiong, J. C. and Yang, Z. G.. Chaos caused by a topologically mixing map. Dynamical Systems and Related Topics (Nagoya, 1990) (Advanced Series in Dynamical Systems, 9) . World Scientific, River Edge, NJ, 1991, pp. 550572.Google Scholar
Xiong, J.. Erratic time dependence of orbits for a topologically mixing map. J. China Univ. Sci. Tech. 21(4) (1991), 387396.Google Scholar
Xiong, J. C.. Hausdorff dimension of a chaotic set of shift of a symbolic space. Sci. China Ser. A 38(6) (1995), 696708.Google Scholar