Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T14:02:46.466Z Has data issue: false hasContentIssue false

Geometrical Markov coding of geodesics on surfaces of constant negative curvature

Published online by Cambridge University Press:  19 September 2008

Caroline Series
Affiliation:
Mathematics Institute, University of Warwick, Coventry, CV4 7AL, England Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A natural geometrical representation of the geodesic flow on a surface M of constant negative curvature is given in which the base transformation is the shift on a (finite type) space of shortest words relative to a fixed generating set for π1(M) and the height function is the hyperbolic distance across a fundamental region for π1(M). This representation is obtained by comparing cutting sequences on M with generalised continued fraction expansions of endpoints on ℝ

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

References

REFERENCES

[1]Adler, R. & Flatto, L.. Cross section maps for the geodesic flow on the modular surface. Contemp. Math. 26(1984), 924.CrossRefGoogle Scholar
[2]Artin, E.. Ein mechanisches System mit quasi ergodischen Bahnen. Collected Papers. Addison Wesley, 1965, 499‐501.CrossRefGoogle Scholar
[3]Birman, J. & Series, C., Dehn's algorithm revisited, with applications to simple curves on surfaces. Proc. Conf. on Combinatorial Group Theory, Utah, 1984, (Ed. Gersten, and Stallings, ).Google Scholar
[4]Bowen, R. & Ruelle, D.. The ergodic theory of Axiom A flows. Invent. Math. 29 (1975), 181202.CrossRefGoogle Scholar
[5]Bowen, R. & Series, C.. Markov maps associated to Fuchsian groups. Publ. I.H.E.S. 50 (1979), 153170.Google Scholar
[6]Hedlund, G. A.. A metrically transitive group defined by the modular group. Amer. J. Math. 57 (1935), 668678.CrossRefGoogle Scholar
[7]Hedlund, G. A.. On the metrical transitivity of geodesies on closed surfaces of constant negative curvature. Ann. Math. 35 (1934), 787808.CrossRefGoogle Scholar
[8]Koebe, P.. Riemannische Manigfaltigkeiten und nichteuklidische Raumformen, IV. Sitzungberichte der Preussichen Akad. der Wissenschaften (1929), 414457.Google Scholar
[9]Moeckel, R.. Geodesies on modular surfaces and continued fractions. Ergod. Th. & Dynam. Sys. 2 (1982), 6984.CrossRefGoogle Scholar
[10]Morse, M.. A one-to-one representation of geodesies on a surface of negative curvature. Amer. J. Math. XLIII (1921), 3351.CrossRefGoogle Scholar
[11]Morse, M.. Recurrent geodesies on a surface of negative curvature. Trans. Amer. Math. Soc. XXII (1921), 84100.CrossRefGoogle Scholar
[12]Morse, M.. Symbolic dynamics. Institute for Advanced Study Notes, Princeton (1966) (unpublished). (First written 1938.)Google Scholar
[13]Morse, M.. Selected Papers, (Ed. Bott, R.). Springer-Verlag: New York (1981).Google Scholar
[14]Nielsen, J.. Untersuchungen zur Topologie der geschlossen zweiseitige Flächen. Act. Math. 50 (1927), 189358.CrossRefGoogle Scholar
[15]Series, C.. Symbolic dynamics for geodesic flows. Acta Math., 146 (1981), 103128.CrossRefGoogle Scholar
[16]Series, C.. On coding geodesies with continued fractions. Enseignement Mathématique 29, Univ. de Geneve (1980), 6776.Google Scholar
[17]Series, C.. The infinite word problem and limit sets in Fuchsian groups. Ergod. Th. & Dynam. Sys. 1 (1981), 337360.CrossRefGoogle Scholar
[18]Series, C.. The modular surface and continued fractions. J. London Math. Soc. (2), 31 (1985), 6980.CrossRefGoogle Scholar
[19]Smith, H. J.. Mémoire sur les equations modulaires. Ac. de Lincei 1877. (Collected Papers, Chelsea 1965, 224241.)Google Scholar