No CrossRef data available.
Published online by Cambridge University Press: 04 July 2022
A fundamental question in the field of cohomology of dynamical systems is to determine when there are solutions to the coboundary equation:
In many cases, T is given to be an ergodic invertible measure-preserving transformation on a standard probability space
$(X, {\mathcal B}, \mu )$
and
is contained in
$L^p$
for
$p \geq 0$
. We extend previous results by showing for any measurable f that is non-zero on a set of positive measure, the class of measure-preserving T with a measurable solution g is meager (including the case where
$\int _X f\,d\mu = 0$
). From this fact, a natural question arises: given f, does there always exist a solution pair T and g? In regards to this question, our main results are as follows. Given measurable f, there exist an ergodic invertible measure-preserving transformation T and measurable function g such that
$f(x) = g(x) - g(Tx)$
for almost every (a.e.)
$x\in X$
, if and only if
$\int _{f> 0} f\,d\mu = - \int _{f < 0} f\,d\mu $
(whether finite or
$\infty $
). Given mean-zero
$f \in L^p(\mu )$
for
$p \geq 1$
, there exist an ergodic invertible measure-preserving T and
$g \in L^{p-1}(\mu )$
such that
$f(x) = g(x) - g( Tx )$
for a.e.
$x \in X$
. In some sense, the previous existence result is the best possible. For
$p \geq 1$
, there exists a dense
$G_{\delta }$
set of mean-zero
$f \in L^p(\mu )$
such that for any ergodic invertible measure-preserving T and any measurable g such that
$f(x) = g(x) - g(Tx)$
almost everywhere, then
$g \notin L^q(\mu )$
for
$q> p - 1$
. Finally, it is shown that we cannot expect finite moments for solutions g, when
$f \in L^1(\mu )$
. In particular, given any
such that
$\lim _{x\to \infty } \phi (x) = \infty $
, there exist mean-zero
$f \in L^1(\mu )$
such that for any solutions T and g, the transfer function g satisfies:
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.