Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T22:49:11.614Z Has data issue: false hasContentIssue false

Ergodic theorem in CAT(0) spaces in terms of inductive means

Published online by Cambridge University Press:  17 March 2022

JORGE ANTEZANA*
Affiliation:
Instituto Argentino de Matemática ‘Alberto P. Calderón’ (IAM-CONICET), CABA, Argentina and Departamento de Matemática, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Buenos Aires, Argentina (e-mail: eghiglioni@mate.unlp.edu.ar, demetrio@mate.unlp.edu.ar)
EDUARDO GHIGLIONI
Affiliation:
Instituto Argentino de Matemática ‘Alberto P. Calderón’ (IAM-CONICET), CABA, Argentina and Departamento de Matemática, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Buenos Aires, Argentina (e-mail: eghiglioni@mate.unlp.edu.ar, demetrio@mate.unlp.edu.ar)
DEMETRIO STOJANOFF
Affiliation:
Instituto Argentino de Matemática ‘Alberto P. Calderón’ (IAM-CONICET), CABA, Argentina and Departamento de Matemática, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Buenos Aires, Argentina (e-mail: eghiglioni@mate.unlp.edu.ar, demetrio@mate.unlp.edu.ar)

Abstract

Let $(G,+)$ be a compact, abelian, and metrizable topological group. In this group we take $g\in G$ such that the corresponding automorphism $\tau _g$ is ergodic. The main result of this paper is a new ergodic theorem for functions in $L^1(G,M)$ , where M is a Hadamard space. The novelty of our result is that we use inductive means to average the elements of the orbit $\{\tau _g^n(h)\}_{n\in \mathbb {N}}$ . The advantage of inductive means is that they can be explicitly computed in many important examples. The proof of the ergodic theorem is done firstly for continuous functions, and then it is extended to $L^1$ functions. The extension is based on a new construction of mollifiers in Hadamard spaces. This construction has the advantage that it only uses the metric structure and the existence of barycenters, and does not require the existence of an underlying vector space. For this reason, it can be used in any Hadamard space, in contrast to those results that need to use the tangent space or some chart to define the mollifier.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexandrov, A. D.. A theorem on triangles in a metric space and some applications. Tr. Mat. Inst. Steklova 38 (1951), 523.Google Scholar
Austin, T.. A CAT(0) valued pointwise ergodic theorem. J. Topol. Anal. 3 (2011), 145152.CrossRefGoogle Scholar
Bačák, M.. Convex Analysis and Optimization in Hadamard Spaces (De Gruyter Series in Nonlinear Analysis and Applications, 22). De Gruyter, Berlin, 2014.CrossRefGoogle Scholar
Ballmann, W.. Lectures on Spaces of Nonpositive Curvature (DMV Seminar, 25). Birkhäuser Verlag, Basel, 1995.CrossRefGoogle Scholar
Ballmann, W., Gromov, M. and Schroeder, V.. Manifolds of Nonpositive Curvature (Progress in Mathematics, 61). Birkhäuser, Boston, 1985.CrossRefGoogle Scholar
Barbaresco, F.. Interactions between symmetric cone and information geometries: Bruhat–Tits and Siegel spaces models for higher resolution autoregressive Doppler imagery. Emerging Trends in Visual Computing (Lecture Notes in Computer Science, 5416). Ed. Nielsen, F.. Springer, Berlin, 2009, pp. 124163.CrossRefGoogle Scholar
Bhatia, R. and Karandikar, R.. Monotonicity of the matrix geometric mean. Math. Ann. 353(4) (2012), 14531467.CrossRefGoogle Scholar
Bini, D. and Iannazzo, B.. Computing the Karcher mean of symmetric positive definite matrices. Linear Algebra Appl. 438 (2013), 17001710.CrossRefGoogle Scholar
Bochi, J. and Navas, A.. A geometric path from zero Lyapunov exponents to rotation cocycles. Ergod. Th. & Dynam. Sys. 35 (2015), 374402.CrossRefGoogle Scholar
Bridson, M. R. and Haefliger, A.. Metric Spaces of Non-positive Curvature (Grundlehren der Mathematischen Wissenschaften, 319). Springer-Verlag, Berlin, 1999.CrossRefGoogle Scholar
Dudley, R. M.. Real Analysis and Probability (Cambridge Studies in Advanced Mathematics, 74). Cambridge University Press, Cambridge, 2002.CrossRefGoogle Scholar
Es-Sahib, A. and Heinich, H.. Barycentre canonique pour un espace metrique a courbure negative. Seminaire de Probabilites (Lecture Notes in Mathematics, 1709). Eds. J. Azéma, M. Émery, M. Ledoux and M. Yor. Springer, Berlin, 1999.Google Scholar
Gromov, M.. Structures métriques pour les variétés Riemanniennes (Rédigé par J. Lafontaine et P. Pansu, Textes Math., 1). CEDIC/Fernand Nathan, Paris, 1981.Google Scholar
Gromov, M.. Hyperbolic groups. Essays in Group Theory (Mathematical Sciences Research Institute Publications, 8). Ed. Gerten, S. M.. Springer-Verlag, New York, 1987, pp. 75264.CrossRefGoogle Scholar
Jost, J.. Nonpositive Curvature: Geometric and Analytic Aspects (Lectures in Mathematics ETH Zurich). Birkhäuser, Basel, 1997.CrossRefGoogle Scholar
Karcher, H.. Riemannian center of mass and mollifier smoothing. Comm. Pure Appl. Math. 30 (1977), 509541.CrossRefGoogle Scholar
Lawson, J. and Lim, Y.. Monotonic properties of the least squares mean. Math. Ann. 351 (2011), 267279.CrossRefGoogle Scholar
Lawson, J. and Lim, Y.. Contractive barycentric maps. J. Operator Theory 77 (2017), 87107.CrossRefGoogle Scholar
Lee, J. and Naor, A.. Extending Lipschitz functions via random metric partitions. Invent. Math. 160 (2005), 5995.CrossRefGoogle Scholar
Lim, Y. and Pálfia, M.. Matrix power mean and the Karcher mean. J. Funct. Anal. 262 (2012), 14981514.CrossRefGoogle Scholar
Lim, Y. and Pálfia, M.. Weighted deterministic walks and no dice approach for the least squares mean on Hadamard spaces. Bull. Lond. Math. Soc. 46 (2014), 561570.CrossRefGoogle Scholar
Mendel, M. and Naor, A.. Spectral calculus and Lipschitz extension for barycentric metric spaces. Anal. Geom. Metr. Spaces 1 (2013), 163199.CrossRefGoogle Scholar
Moakher, M. and Zerai, M.. The Riemannian geometry of the space of positive-definite matrices and its application to the regularization of positive-definite matrix-valued data. J. Math. Imaging Vision 40 (2011), 171187.CrossRefGoogle Scholar
Navas, A.. An ${L}^1$ ergodic theorem with values in a non-positively curved space via a canonical barycenter map. Ergod. Th. & Dynam. Sys. 33 (2013), 609623.CrossRefGoogle Scholar
Ohta, S.. Extending Lipschitz and Hölder maps between metric spaces. Positivity 13 (2009), 407425.CrossRefGoogle Scholar
Pass, B.. Uniqueness and Monge solutions in the multimarginal optimal transportation problem. SIAM J. Math. Anal. 43 (2011), 27582775.CrossRefGoogle Scholar
Pass, B.. Optimal transportation with infinitely many marginals. J. Funct. Anal. 264 (2013), 947963.CrossRefGoogle Scholar
Reshetnyak, Y. G.. Inextensible mappings in a space of curvature no greater than K . Sib. Math. J. 9 (1968), 683689.CrossRefGoogle Scholar
Sturm, K.-T.. Nonlinear martingale theory for processes with values in metric spaces of nonpositive curvature. Ann. Probab. 30(3) (2002), 11951222.CrossRefGoogle Scholar
Sturm, K.-T.. Probability measures on metric spaces of nonpositive curvature. Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Contemporary Mathematics, 338). Eds. Auscher, P., Coulhon, T. and Grigor’yan, A.. American Mathematical Society, Providence, RI, 2003.Google Scholar
Tao, T.. Poincare’s Legacies: Pages from Year Two of a Mathematical Blog. Part I. American Mathematical Society, Providence, RI, 2009.Google Scholar
Walters, P.. An Introduction to Ergodic Theory (Graduate Texts in Mathematics, 79). Springer-Verlag, New York, 1982.CrossRefGoogle Scholar