Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T03:49:25.530Z Has data issue: false hasContentIssue false

Ergodic multiplier properties

Published online by Cambridge University Press:  10 November 2014

ADI GLÜCKSAM*
Affiliation:
School of Mathematical Sciences, Tel Aviv University, Israel email adigluck@post.tau.ac.il

Abstract

In this article we will extend ‘the weak mixing theorem’ for certain locally compact Polish groups (Moore groups and minimally weakly mixing groups). In addition, we will show that the Gaussian action associated with the infinite-dimensional irreducible representation of the continuous Heisenberg group, $H_{3}(\mathbb{R})$, is weakly mixing but not mildly mixing.

Type
Research Article
Copyright
© Cambridge University Press, 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaronson, J.. An Introduction to Infinite Ergodic Theory (Mathematical Surveys and Monographs, 50). American Mathematical Society, Providence, RI, 1997.Google Scholar
Aaronson, J. and Lemańczyk, M.. Exactness of Rokhlin endomorphisms and weak mixing of Poisson boundaries. Algebraic and Topological Dynamics (Contemporary Mathematics, 385). American Mathematical Society, Providence, RI, 2005, pp. 7787.Google Scholar
Aaronson, J., Lin, M. and Weiss, B.. Mixing properties of Markov operators and ergodic transformations, and ergodicity of Cartesian products. Israel J. Math. 33(3–4) (1980), 198224.Google Scholar
Bekka, M. B. and Mayer, M.. Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces (London Mathematical Society Lecture Note Series, 269). Cambridge University Press, Cambridge, 2000.Google Scholar
Bergelson, V. and Gorodnik, A.. Weakly mixing group actions: a brief survey and an example. Modern Dynamical Systems and Applications. Cambridge University Press, Cambridge, 2004, pp. 325.Google Scholar
Bergelson, V. and Rosenblatt, J.. Mixing actions of groups. Illinois J. Math. 32(1) (1988), 6580.Google Scholar
Chou, C.. Minimally weakly almost periodic groups. J. Funct. Anal. 36(1) (1980), 117.Google Scholar
Danilenko, A. I.. Mixing actions of Heisenberg group. Ergod. Th. & Dynam. Sys. 34(4) (2014), 11421167.Google Scholar
Dixmier, J.. C*-Algebras. North-Holland, Amsterdam, 1977.Google Scholar
Dye, H. A.. On the ergodic mixing theorem. Trans. Amer. Math. Soc. 118 (1965), 123130.CrossRefGoogle Scholar
Ellis, R. and Nerurkar, M.. Weakly almost periodic flows. Trans. Amer. Math. Soc. 313(1) (1989), 103119.Google Scholar
Furstenberg, H. and Weiss, B.. The finite multipliers of infinite ergodic transformations. The Structure of Attractors in Dynamical Systems (Proc. Conf. North Dakota State Univ., Fargo, ND, 1977) (Lecture Notes in Mathematics, 668). Springer, Berlin, 1978, pp. 127132.Google Scholar
Glasner, E.. Ergodic Theory via Joinings (Mathematical Surveys and Monographs, 101). American Mathematical Society, Providence, RI, 2003.Google Scholar
Glasner, E., Tsirelson, B. and Weiss, B.. The automorphism group of the Gaussian measure cannot act pointwise. Israel J. Math. 148 (2005), 305329.Google Scholar
Glasner, E. and Weiss, B.. Weak mixing properties for nonsingular actions. MSc thesis, Preprint, 2013,arXiv:1308.0159.Google Scholar
Glücksam, A.. Ergodic multiplier properties. MSc thesis, Preprint, 2013, arXiv:1306.3669.Google Scholar
Grosser, S. and Moskowitz, M.. Representation theory of central topological groups. Trans. Amer. Math. Soc. 129 (1967), 361390.Google Scholar
Hellinger, E.. Neue begründung der theorie quadratischer formen von unendlichvielen veränderlichen. J. Reine Angew. Math. 136 (1909), 210271.Google Scholar
Howe, R. E. and Moore, C. C.. Asymptotic properties of unitary representations. J. Funct. Anal. 32(1) (1979), 7296.Google Scholar
Janson, S.. Gaussian Hilbert Spaces (Cambridge Tracts in Mathematics, 129). Cambridge University Press, Cambridge, 1997.Google Scholar
Kirillov, A.. Lectures on the Orbit Method (Graduate Studies in Mathematics, 64). American Mathematical Society, Providence, RI, 2004.Google Scholar
Koopman, B. O. and von Neumann, J.. Dynamical systems of continuous spectra. Proc. Natl. Acad. Sci. (U.S.A) 18(3) (1932), 255263.Google Scholar
Mackey, G. W.. Point realizations of transformation groups. Illinois J. Math. 6 (1962), 327335.Google Scholar
Maruyama, G.. The harmonic analysis of stationary stochastic processes. Mem. Fac. Sci. Kyūsyū Univ. A 4 (1949), 45106.Google Scholar
Moore, C. C.. Groups with finite dimensional irreducible representations. Trans. Amer. Math. Soc. 166 (1972), 401410.Google Scholar
Nadkarni, M. G.. Spectral Theory of Dynamical Systems. Birkhäuser, Basel, 1998.Google Scholar
Neveu, J.. Processus aléatoires gaussiens (Séminaire de Mathématiques Supérieures, 34 (Été, 1968)). Les Presses de l’Université de Montréal, Montreal, 1968.Google Scholar
Petersen, K.. Ergodic Theory (Cambridge Studies in Advanced Mathematics, 2). Cambridge University Press, Cambridge, 1983.Google Scholar
Peterson, J. and Sinclair, T.. On cocycle superrigidity for Gaussian actions. Ergod. Th. & Dynam. Sys. 32(1) (2012), 249272.Google Scholar
Ramsay, A.. Virtual groups and group actions. Adv. Math. 6 (1971), 253322.CrossRefGoogle Scholar
Royden, H. L.. Real Analysis. Macmillan, New York, 1963.Google Scholar
Ryll-Nardzewski, C.. On fixed points of semigroups of endomorphisms of linear spaces. Proc. Fifth Berkeley Sympos. Mathematical Statistics and Probability (Berkeley, CA, 1965–1966), Vol. II: Contributions to Probability Theory, Part 1. University of California Press, Berkeley, CA, 1967, pp. 5561.Google Scholar
Sakai, S.. On type I C*-algebras. Proc. Amer. Math. Soc. 18 (1967), 861863.Google Scholar
Samet, I.. Rigid actions of amenable groups. Israel J. Math. 173 (2009), 6190.Google Scholar
Schmidt, K.. Spectra of ergodic group actions. Israel J. Math. 41(1–2) (1982), 151153.Google Scholar
Schmidt, K. and Walters, P.. Mildly mixing actions of locally compact groups. Proc. Lond. Math. Soc. (3) 45(3) (1982), 506518.Google Scholar
Stone, M. H.. On one-parameter unitary groups in Hilbert space. Ann. of Math. (2) 33(3) (1932), 643648.CrossRefGoogle Scholar
Tomiyama, J.. Invitation to C*-Algebras and Topological Dynamics. World Scientific, Singapore, 1987.Google Scholar
von Neumann, J.. Über einen Satz von Herrn M.H. Stone. Ann. of Math. (2) 33(3) (1932), 567573.Google Scholar