Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T21:23:59.914Z Has data issue: false hasContentIssue false

Dimension of invariant measures for maps with exponent zero

Published online by Cambridge University Press:  19 September 2008

F. Ledrappier
Affiliation:
Laboratoire de Probabilités, Université Paris VI, T56; 6, Place Jussieu, 75230 Paris Cedex 05, France
M. Misiurewicz
Affiliation:
Instytut Matematyki, Universytet Warszawski, PKiN IXp, 00.901 Warszawa, Poland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We give examples of maps of the interval with zero entropy for which the continuous invariant measure has no dimension, and we prove a dimension property for maps lying in the stable manifold of Feigenbaum's fixed points.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

References

REFERENCES

[1]Billingsley, P.. Ergodic Theory and Information. J. Wiley and Sons, 1965.Google Scholar
[2]Brin, M. & Katok, A.. On local entropy. In Geometric Dynamics. Lect. Notes in Math. 1007 Springer (1983).CrossRefGoogle Scholar
[3]Campanino, M. & Epstein, H.. On the existence of Feigenbaum's fixed point. Commun. Math. Phys. 79 (1981), 261302.CrossRefGoogle Scholar
[4]Collet, P. & Eckmann, J.-P.. Iterated maps on the interval as dynamical systems. Progress in Physics, Birkhäuser: Boston, 1980.Google Scholar
[5]Collet, P., Eckmann, J.-P. & Lanford, O. E.. Universal properties of maps on an interval. Commun. Math. Phys. 76 1980, 211254.CrossRefGoogle Scholar
[6]Grassberger, P.. On the Hausdorff dimension of fractal attractors. Journal ofStat. Phys. 26 (1981), 173179.CrossRefGoogle Scholar
[7]Khanin, K. M., Sinai, J. G. & Feigenbaum, H. B. Vul.universality and thermodynamical formalism. Uspehi 39; 3 (1984).Google Scholar
[8]Lanford, O. E.. A computer-assisted proof of the Feigenbaum conjectures. Bull Amer. Math. Soc. (New Series) 6 (1982), 427434.CrossRefGoogle Scholar
[9]Ledrappier, F.. Some relations between dimension and Lyapounov exponents. Commun. Math. Phys. 81 (1981), 229238.CrossRefGoogle Scholar
[10]Misiurewicz, M.. Structure of mappings of an interval with zero entropy. Publ. Math. IHES 53 (1981), 516.CrossRefGoogle Scholar
[11]Misiurewicz, M.. Attracting Cantor set of positive measure for a C map of an interval. Ergod. Th & Dynam. Sys. 2 (1982), 405415.CrossRefGoogle Scholar
[12]Ruelle, D.. An inequality for the entropy of different;able maps. Bol Soc. Bras. Mat. 9 (1978), 8387.CrossRefGoogle Scholar