Published online by Cambridge University Press: 02 April 2001
We construct the Green bundles for an energy level without conjugate points of a convex Hamiltonian. In this case we give a formula for the metric entropy of the Liouville measure and prove that the exponential map is a local diffeomorphism. We prove that the Hamiltonian flow is Anosov if and only if the Green bundles are transversal. Using the Clebsch transformation of the index form we prove that if the unique minimizing measure of a generic Lagrangian is supported on a periodic orbit, then it is a hyperbolic periodic orbit.
We also show some examples of differences with the behaviour of a geodesic flow without conjugate points, namely: (non-contact) flows and periodic orbits without invariant transversal bundles, segments without conjugate points but with crossing solutions and non-surjective exponential maps.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.