Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T21:43:48.590Z Has data issue: false hasContentIssue false

An example of a non-uniquely ergodic lamination

Published online by Cambridge University Press:  26 May 2010

ÁLVARO LOZANO-ROJO*
Affiliation:
Universidad del País Vasco, Facultad de CC, Económicas y Empresariales, Dpto. de Economía Aplicada III, Av. Lehendakari Aguirre 83, 48015 Bilbao, Spain (email: alvaro.lozano@ehu.es)

Abstract

This paper presents an example of Riemann surface lamination with at least two ergodic invariant measures. The generic leaves for those measures are of different growth and have different numbers of ends.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Alcalde Cuesta, F., Lozano Rojo, Á. and Macho Stadler, M.. Dynamique transverse de la lamination de Ghys–Kenyon. Astérisque 323 (2009), 116.Google Scholar
[2]Bellissard, J., Benedetti, R. and Gambaudo, J.-M.. Spaces of tilings, finite telescopic approximations and gap-labelling. Comm. Math. Phys. 261(1) (2006), 141.CrossRefGoogle Scholar
[3]Blanc, E.. Propriétés génériques des laminations, Thèse UCB-Lyon 1, 2001. Available athttp://www.umpa.ens-lyon.fr/∼eblanc/.Google Scholar
[4]Cantwell, J. and Conlon, L.. Generic leaves. Comment. Math. Helv. 73 (1998), 306336.CrossRefGoogle Scholar
[5]Feldman, J. and Moore, C.. Ergodic equivalence relations, cohomology and Von Neumann algebras I. Trans. Amer. Math. Soc. 234(2) (1977), 289324.CrossRefGoogle Scholar
[6]Gaboriau, D.. Dynamique des systèmes d’isométries: Sur les bouts des orbites. Invent. Math. 126 (1996), 297318.CrossRefGoogle Scholar
[7]Ghys, É.. Laminations par surfaces de Riemman. Panor. Synthèses 8 (1999), 4995.Google Scholar
[8]Ghys, É.. Topologie des feuilles génériques. Ann. of Math. (2) 141 (1995), 387422.CrossRefGoogle Scholar
[9]Goodman, S. E. and Plante, J. F.. Holonomy and averaging in foliated sets. J. Differential Geom. 14 (1979), 401407.CrossRefGoogle Scholar
[10]Gromov, M.. Asymptotic invariants for infinite groups. Geometric Group Theory, Vol. 2 (Sussex, 1991) (London Mathematical Society Lecture Note Series, 182). Cambridge University Press, Cambridge, 1993.Google Scholar
[11]Levitt, G.. On the cost of generating an equivalence relation. Ergod. Th. & Dynam. Sys. 15(6) (1995), 11731181.CrossRefGoogle Scholar
[12]Lozano Rojo, Á.. Laminaciones definidas por grafos repetitivos. PhD Thesis, University of Basque Country, 2008.Google Scholar
[13]Lozano Rojo, Á. The Cayley foliated space of a graphed pseudogroup. Proceedings of the XIV Fall Workshop on Geometry and Physics (Publ. de la RSME, 10). RSME, Madrid, 2006, pp. 267272.Google Scholar
[14]Moise, E.. Geometric Topology in Dimensions 2 and 3 (Graduate Texts in Mathematics, 47). Springer, Berlin, 1977.CrossRefGoogle Scholar
[15]Radin, C. and Wolff, M.. Space tilings and local isomorphism. Geom. Dedicata 42 (1992), 355360.CrossRefGoogle Scholar