Published online by Cambridge University Press: 24 March 2022
A blender for a surface endomorphism is a hyperbolic basic set for which the union of the local unstable manifolds robustly contains an open set. Introduced by Bonatti and Díaz in the 1990s, blenders turned out to have many powerful applications to differentiable dynamics. In particular, a generalization in terms of jets, called parablenders, allowed Berger to prove the existence of generic families displaying robustly infinitely many sinks. In this paper we introduce analogous notions in a measurable setting. We define an almost blender as a hyperbolic basic set for which a prevalent perturbation has a local unstable set having positive Lebesgue measure. Almost parablenders are defined similarly in terms of jets. We study families of endomorphisms of
$\mathbb {R}^2$
leaving invariant the continuation of a hyperbolic basic set. When an inequality involving the entropy and the maximal contraction along stable manifolds is satisfied, we obtain an almost blender or parablender. This answers partially a conjecture of Berger, and complements previous works on the construction of blenders by Avila, Crovisier, and Wilkinson or by Moreira and Silva. The proof is based on thermodynamic formalism: following works of Mihailescu, Simon, Solomyak, and Urbański, we study families of skew-products and we give conditions under which these maps have limit sets of positive measure inside their fibers.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.