Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T13:51:34.677Z Has data issue: false hasContentIssue false

On higher-order Fourier analysis in characteristic p

Published online by Cambridge University Press:  27 January 2023

PABLO CANDELA*
Affiliation:
Universidad Autónoma de Madrid and ICMAT, Madrid 28049, Spain
DIEGO GONZÁLEZ-SÁNCHEZ
Affiliation:
MTA Alfréd Rényi Institute of Mathematics, Budapest H-1053, Hungary (e-mail: diegogs@renyi.hu, szegedyb@gmail.com)
BALÁZS SZEGEDY
Affiliation:
MTA Alfréd Rényi Institute of Mathematics, Budapest H-1053, Hungary (e-mail: diegogs@renyi.hu, szegedyb@gmail.com)

Abstract

In this paper, the nilspace approach to higher-order Fourier analysis is developed in the setting of vector spaces over a prime field $\mathbb {F}_p$, with applications mainly in ergodic theory. A key requisite for this development is to identify a class of nilspaces adequate for this setting. We introduce such a class, whose members we call p-homogeneous nilspaces. One of our main results characterizes these objects in terms of a simple algebraic property. We then prove various further results on these nilspaces, leading to a structure theorem describing every finite p-homogeneous nilspace as the image, under a nilspace fibration, of a member of a simple family of filtered finite abelian p-groups. The applications include a description of the Host–Kra factors of ergodic $\mathbb {F}_p^\omega $-systems as p-homogeneous nilspace systems. This enables the analysis of these factors to be reduced to the study of such nilspace systems, with central questions on the factors thus becoming purely algebraic problems on finite nilspaces. We illustrate this approach by proving that for $k\leq p+1$ the kth Host–Kra factor is an Abramov system of order at most k, extending a result of Bergelson–Tao–Ziegler that holds for $k< p$. We illustrate the utility of p-homogeneous nilspaces also by showing that the structure theorem yields a new proof of the Tao–Ziegler inverse theorem for Gowers norms on $\mathbb {F}_p^n$.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramov, L. M.. Metric automorphisms with quasi-discrete spectrum. Izv. Akad. Nauk SSSR Ser. Mat. 26 (1962), 513530; in English translation: Amer. Math. Soc. Transl. (2) 39 (1964), 37–56.Google Scholar
Bergelson, V., Tao, T. and Ziegler, T.. An inverse theorem for the uniformity seminorms associated with the action of ${F}_p^{\infty }$ . Geom. Funct. Anal. 19(6) (2010), 15391596.CrossRefGoogle Scholar
Bergelson, V., Tao, T. and Ziegler, T.. Multiple recurrence and convergence results associated to ${F}_p^{\omega }$ -action. J. Anal. Math. 127 (2015), 329378.10.1007/s11854-015-0033-1CrossRefGoogle Scholar
Berger, A., Sah, A., Sawhney, M. and Tidor, J.. Non-classical polynomials and the inverse theorem. Math. Proc. Cambridge Philos. Soc. 173 (2022), 525537.10.1017/S0305004121000682CrossRefGoogle Scholar
Bollobás, B.. Linear Analysis. An Introductory Course, 2nd edn. Cambridge University Press, Cambridge, 1999.10.1017/CBO9781139168472CrossRefGoogle Scholar
Camarena, O. A. and Szegedy, B.. Nilspaces, nilmanifolds and their morphisms. Preprint, 2012, arXiv:1009.3825.Google Scholar
Candela, P.. Notes on nilspaces: algebraic aspects . Discrete Anal. 2017 (2017), Paper no. 15.Google Scholar
Candela, P.. Notes on compact nilspaces . Discrete Anal. 2017 (2017), Paper no. 16, 57pp.Google Scholar
Candela, P., González-Sánchez, D. and Szegedy, B.. On nilspace systems and their morphisms. Ergod. Th. & Dynam. Sys. 40(11) (2020), 30153029.10.1017/etds.2019.24CrossRefGoogle Scholar
Candela, P., González-Sánchez, D. and Szegedy, B.. A refinement of Cauchy–Schwarz complexity, with applications. Extended Abstracts EuroComb 2021. Eds. Nešetřil, J., Perarnau, G., Rué, J. and Serra, O.. Springer International Publishing, Cham, 2021, pp. 293298.10.1007/978-3-030-83823-2_46CrossRefGoogle Scholar
Candela, P., González-Sánchez, D. and Szegedy, B.. A refinement of Cauchy–Schwarz complexity. European J. Combin. 106 (2022), Paper no. 103592.10.1016/j.ejc.2022.103592CrossRefGoogle Scholar
Candela, P. and Szegedy, B.. Nilspace factors for general uniformity seminorms, cubic exchangeability and limits. Mem. Amer. Math. Soc., to appear, arXiv:1803.08758.Google Scholar
Candela, P. and Szegedy, B.. Regularity and inverse theorems for uniformity norms on compact abelian groups and nilmanifolds. J. Reine Angew. Math. 789 (2022), 142.10.1515/crelle-2022-0016CrossRefGoogle Scholar
Glasner, E., Gutman, Y. and Ye, X.. Higher order regionally proximal equivalence relations for general minimal group actions. Adv. Math. 333 (2018), 10041041.CrossRefGoogle Scholar
Gowers, W. T.. A new proof of Szemerédi’s theorem. Geom. Funct. Anal. 11(3) (2001), 465588.10.1007/s00039-001-0332-9CrossRefGoogle Scholar
Gowers, W. T. and Milićević, L.. An inverse theorem for Freiman multi-homomorphisms. Preprint, 2021, arXiv:2002.11667.Google Scholar
Green, B. and Tao, T.. An inverse theorem for the Gowers ${U}^3$ -norm. Proc. Edinb. Math. Soc. (1) 51 (2008), 73153.10.1017/S0013091505000325CrossRefGoogle Scholar
Green, B. and Tao, T.. An arithmetic regularity lemma, an associated counting lemma, and applications. An Irregular Mind (Bolyai Society Mathematical Studies, 21). Eds. S. Imre Bárány and S. József Solymosi. János Bolyai Mathematical Society, Budapest, 2010, pp. 261334.10.1007/978-3-642-14444-8_7CrossRefGoogle Scholar
Green, B., Tao, T. and Ziegler, T.. An inverse theorem for the Gowers ${U}^4$ -norm. Glasg. Math. J. 53 (2011), 150.10.1017/S0017089510000546CrossRefGoogle Scholar
Green, B., Tao, T. and Ziegler, T.. An inverse theorem for the Gowers ${U}^{s+1}\left[N\right]$ -norm. Ann. of Math. (2) 176(2) (2012), 12311372.10.4007/annals.2012.176.2.11CrossRefGoogle Scholar
Green, B. J.. Finite field models in additive combinatorics. Surveys in Combinatorics 2005. Ed. Webb, B. S.. Cambridge University Press, Cambridge, 2005, pp. 127.Google Scholar
Gutman, Y. and Lian, Z.. Strictly ergodic distal models and a new approach to the Host–Kra factors. J. Funct. Anal. 284(4) (2023), 109779.10.1016/j.jfa.2022.109779CrossRefGoogle Scholar
Gutman, Y., Manners, F. and Varjú, P. P.. The structure theory of nilspaces II: Representation as nilmanifolds. Trans. Amer. Math. Soc. 371 (2019), 49514992.10.1090/tran/7503CrossRefGoogle Scholar
Gutman, Y., Manners, F. and Varjú, P. P.. The structure theory of nilspaces I. J. Anal. Math. 140 (2020), 299369.10.1007/s11854-020-0093-8CrossRefGoogle Scholar
Gutman, Y., Manners, F. and Varjú, P. P.. The structure theory of nilspaces III: Inverse limit representations and topological dynamics. Adv. Math. 365 (2020), 107059.CrossRefGoogle Scholar
Hasselblatt, B. and Katok, A.. Principal structures. Handbook of Dynamical Systems. Vol. 1A. Eds. B. Hasselblatt and A. Katok. North-Holland, Amsterdam, 2002, pp. 1203.Google Scholar
Host, B. and Kra, B.. Nonconventional ergodic averages and nilmanifolds. Ann. of Math. (2) 161(1) (2005), 397488.CrossRefGoogle Scholar
Host, B. and Kra, B.. Parallelepipeds, nilpotent groups, and Gowers norms. Bull. Soc. Math. France 136 (2008), 405437.10.24033/bsmf.2561CrossRefGoogle Scholar
Host, B. and Kra, B.. Nilpotent Structures in Ergodic Theory (Mathematical Surveys and Monographs, 236). American Mathematical Society, Providence, RI 2018, 427pp.Google Scholar
Kechris, A. S.. Classical Descriptive Set Theory (Graduate Texts in Mathematics, 156). Springer-Verlag, New York, 1995.CrossRefGoogle Scholar
Manners, F.. Quantitative bounds in the inverse theorem for the Gowers ${U}^{s+1}$ -norms over cyclic groups. Preprint, 2018, arXiv:1811.00718.Google Scholar
Manners, F.. True complexity and iterated Cauchy–Schwarz. Preprint, 2021, arXiv:2109.05731.Google Scholar
Shalom, O.. Ergodic averages in abelian groups and Khintchine recurrence. Trans. Amer. Math. Soc. 375 (2022), 27292761.Google Scholar
Shalom, O.. Host–Kra theory for ${\oplus}_{p\in P}{F}_p$ systems and multiple recurrence. Ergod. Th. & Dynam. Sys. 43 (2023), 299360.CrossRefGoogle Scholar
Szegedy, B.. Structure of finite nilspaces and inverse theorems for the Gowers norms in bounded exponent groups. Preprint, 2010, arXiv:1011.1057.Google Scholar
Szegedy, B.. On higher order Fourier analysis. Preprint, 2012, arXiv:1203.2260.Google Scholar
Tao, T. and Ziegler, T.. The inverse conjecture for the Gowers norm over finite fields via the correspondence principle. Anal. PDE 3 (2010), 120.10.2140/apde.2010.3.1CrossRefGoogle Scholar
Tao, T. and Ziegler, T.. The inverse conjecture for the Gowers norm over finite fields in low characteristic. Ann. Comb. 16 (2012), 121188.CrossRefGoogle Scholar
Wolf, J.. Finite field models in arithmetic combinatorics—ten years on. Finite Fields Appl. 32 (2015), 233274.CrossRefGoogle Scholar