Published online by Cambridge University Press: 22 December 2021
We generalize the greedy and lazy $\beta $ -transformations for a real base $\beta $ to the setting of alternate bases ${\boldsymbol {\beta }}=(\beta _0,\ldots ,\beta _{p-1})$ , which were recently introduced by the first and second authors as a particular case of Cantor bases. As in the real base case, these new transformations, denoted $T_{{\boldsymbol {\beta }}}$ and $L_{{\boldsymbol {\beta }}}$ respectively, can be iterated in order to generate the digits of the greedy and lazy ${\boldsymbol {\beta }}$ -expansions of real numbers. The aim of this paper is to describe the measure-theoretical dynamical behaviors of $T_{{\boldsymbol {\beta }}}$ and $L_{{\boldsymbol {\beta }}}$ . We first prove the existence of a unique absolutely continuous (with respect to an extended Lebesgue measure, called the p-Lebesgue measure) $T_{{\boldsymbol {\beta }}}$ -invariant measure. We then show that this unique measure is in fact equivalent to the p-Lebesgue measure and that the corresponding dynamical system is ergodic and has entropy $({1}/{p})\log (\beta _{p-1}\cdots \beta _0)$ . We give an explicit expression of the density function of this invariant measure and compute the frequencies of letters in the greedy ${\boldsymbol {\beta }}$ -expansions. The dynamical properties of $L_{{\boldsymbol {\beta }}}$ are obtained by showing that the lazy dynamical system is isomorphic to the greedy one. We also provide an isomorphism with a suitable extension of the $\beta $ -shift. Finally, we show that the ${\boldsymbol {\beta }}$ -expansions can be seen as $(\beta _{p-1}\cdots \beta _0)$ -representations over general digit sets and we compare both frameworks.