Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T03:47:30.131Z Has data issue: false hasContentIssue false

Conditional mean dimension

Published online by Cambridge University Press:  06 September 2021

BINGBING LIANG*
Affiliation:
Department of Mathematical Science, Soochow University, Suzhou 215006, China The Institute of Mathematics of the Polish Academy of Sciences, ul. Śniadeckich 8, Warsaw 00-656, Poland (e-mail: bliang@impan.pl)

Abstract

We introduce some notions of conditional mean dimension for a factor map between two topological dynamical systems and discuss their properties. With the help of these notions, we obtain an inequality to estimate the mean dimension of an extension system. The conditional mean dimension for G-extensions is computed. We also exhibit some applications in dynamical embedding problems.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adler, R. L., Konheim, A. G. and McAndrew, M. H.. Topological entropy. Trans. Amer. Math. Soc. 114(2) (1965), 309319.CrossRefGoogle Scholar
Boltyanskiĭ, V.. An example of a two-dimensional compactum whose topological square is three-dimensional. Amer. Math. Soc. 1951(48) (1951), 36.Google Scholar
Bowen, R.. Entropy for group endomorphisms and homogeneous spaces. Trans. Amer. Math. Soc. 153 (1971), 401414.CrossRefGoogle Scholar
Coornaert, M.. Topological Dimension and Dynamical Systems, Translated and revised from the 2005 French original. Universitext, Springer,Cham, 2015.CrossRefGoogle Scholar
Downarowicz, T. and Serafin, J.. Fiber entropy and conditional variational principles in compact non-metrizable spaces. Fund. Math. 172(3) (2002), 217247.CrossRefGoogle Scholar
Engelking, R.. Theory of Dimensions Finite and Infinite (Sigma Series in Pure Mathematics, 10). Heldermann Verlag,Lemgo, 1995.Google Scholar
Gromov, M.. Topological invariants of dynamical systems and spaces of holomorphic maps. I. Math. Phys. Anal. Geom. 2(4) (1999), 323415.CrossRefGoogle Scholar
Gutman, Y.. Embedding ${\mathbb{Z}}^k$ -actions in cubical shifts and ${\mathbb{Z}}^k$ -symbolic extensions. Ergod. Th. & Dynam. Sys. 31(2) (2011), 383403.CrossRefGoogle Scholar
Gutman, Y.. Mean dimension and Jaworski-type theorems. Proc. Lond. Math. Soc. (3) 111(4) (2015), 831850.CrossRefGoogle Scholar
Gutman, Y.. Embedding topological dynamical systems with periodic points in cubical shifts. Ergod. Th. & Dynam. Sys. 37(2) (2017), 512538.CrossRefGoogle Scholar
Gutman, Y., Lindenstrauss, E. and Tsukamoto, M., Mean dimension of ${\mathbb{Z}}^k$ -actions. Geom. Funct. Anal. 26(3) (2016), 778817.CrossRefGoogle Scholar
Gutman, Y., Qiao, Y. and Szabó, G.. The embedding problem in topological dynamics and Takens’ theorem. Nonlinearity 31(2) (2018), 597620.CrossRefGoogle Scholar
Gutman, Y. and Tsukamoto, M.. Mean dimension and a sharp embedding theorem: extensions of aperiodic subshifts. Ergod. Th. & Dynam. Sys. 34(6) (2014), 18881896.CrossRefGoogle Scholar
Hurewicz, W. and Wallman, H.. Dimension Theory (Princeton Mathematical Series, 4), Princeton University Press,Princeton, 1941.Google Scholar
Li, H.. Compact group automorphisms, addition formulas and Fuglede-Kadison determinants. Ann. Math. (2) 176(1) (2012), 303347.CrossRefGoogle Scholar
Li, H. and Liang, B.. Mean dimension, mean rank, and von Neumann-Lück rank. J. Reine Angew. Math. 739 (2018), 207240.CrossRefGoogle Scholar
Li, H. and Thom, A.. Entropy, determinants, and ${L}^2$ -torsion. J. Amer. Math. Soc. 27(1) (2014), 239292.CrossRefGoogle Scholar
Liang, B. and Yan, K.. Topological pressure for sub-additive potentials of amenable group actions. J. Funct. Anal. 262(2) (2012), 584601.CrossRefGoogle Scholar
Lindenstrauss, E. and Weiss, B.. Mean topological dimension. Israel J. Math. 115 (2000), 124.CrossRefGoogle Scholar
Misiurewicz, M.. Topological conditional entropy. Studia Math. 55(2) (1976), 175200.CrossRefGoogle Scholar
Ornstein, D. S. and Weiss, B.. Entropy and isomorphism theorems for actions of amenable groups. J. Analyse Math. 48 (1987), 1141.CrossRefGoogle Scholar
Schmidt, K.. Dynamical Systems of Algebraic Origin (Progress in Mathematics, 128), Birkhäuser Verlag,Basel, 1995.Google Scholar
Szabó, G.. The Rokhlin dimension of topological ${\mathbb{Z}}^m$ -actions. Proc. Lond. Math. Soc. (3) 110(3) (2015), 673694.CrossRefGoogle Scholar
Szabó, G., Wu, J. and Zacharias, J.. Rokhlin dimension for actions of residually finite groups. Ergod. Th. & Dynam. Sys. 39(8) (2019), 22482304.CrossRefGoogle Scholar
Tsukamoto, M.. Moduli space of Brody curves, energy and mean dimension. Nagoya Math. J. 192 (2008), 2758.CrossRefGoogle Scholar
Weiss, B.. Monotileable amenable groups. Topology, Ergodic Theory, Real Algebraic Geometry (American Mathematical Society Translational Series 2, 202). American Mathematical Society,Providence, RI, 2001, pp. 257262.Google Scholar
Yan, K.. Conditional entropy and fiber entropy for amenable group actions. J. Differential Equations 259(7) (2015), 30043031.CrossRefGoogle Scholar