Hostname: page-component-857557d7f7-fn92c Total loading time: 0 Render date: 2025-11-23T13:41:16.467Z Has data issue: false hasContentIssue false

Pervasive mercury contamination of a semi-aquatic apex predator across the Pantanal wetland

Published online by Cambridge University Press:  13 August 2025

Nathalie Foerster*
Affiliation:
Programa de Pós-Graduação Em Ecologia e Conservação, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil Projeto Ariranhas/Giant Otter Conservation Fund, Arroio do Meio, Brazil IUCN Species Survival Commission, Otter Specialist Group, Gland, Switzerland Laboratório de Vida Selvagem, Embrapa Pantanal, Corumbá, Brazil
Grazielle Soresini
Affiliation:
Projeto Ariranhas/Giant Otter Conservation Fund, Arroio do Meio, Brazil IUCN Species Survival Commission, Otter Specialist Group, Gland, Switzerland
Caroline Leuchtenberger
Affiliation:
Projeto Ariranhas/Giant Otter Conservation Fund, Arroio do Meio, Brazil IUCN Species Survival Commission, Otter Specialist Group, Gland, Switzerland Laboratório de Vida Selvagem, Embrapa Pantanal, Corumbá, Brazil Instituto Federal Farroupilha, Santa Maria, Brazil
Daniela de Assis Bócoli
Affiliation:
Grupo Exata Brasil, Jataí, Brazil
Janaíne de Brito Paiva
Affiliation:
Grupo Exata Brasil, Jataí, Brazil
Carlos Henrique Hoff Brait
Affiliation:
Grupo Exata Brasil, Jataí, Brazil
Guilherme Mourão
Affiliation:
Programa de Pós-Graduação Em Ecologia e Conservação, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil Laboratório de Vida Selvagem, Embrapa Pantanal, Corumbá, Brazil
*
Corresponding author: Nathalie Foerster; Email: nathalie.foerster@gmail.com

Summary

As apex predators, giant otters (Pteronura brasiliensis) are susceptible to the bioaccumulation of heavy metals, particularly in regions where gold-mining contributes to mercury (Hg) pollution. This is the broadest-scale study assessing Hg and selenium (Se) concentrations in the Pantanal. Samples from 10 sites across the Pantanal were analysed using inductively coupled plasma mass spectrometry. We constructed a two-factor generalized additive model (GAM) to investigate the relationship between Hg concentrations in giant otters and their location along river courses in gold-mining areas. To determine the feasibility of merging the dataset from the present study with the dataset of a previous study carried out by our group during 2016–2017, we included the datasets as a factor in the analysis. The GAM results supported the feasibility of merging the datasets. Additionally, we measured Se concentrations due to their potential to mitigate Hg toxicity. Higher Hg levels were found in otters from watercourses near gold-mining areas, with concentrations decreasing downstream, revealing a contamination gradient and the extensive impact of local pollution on wetlands. The highest Hg concentration was recorded in the Bento Gomes River, within a gold-mining area, whereas otters from unconnected sites exhibited lower Hg levels.

Information

Type
Report
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Foundation for Environmental Conservation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Arroyo-Abad, U, Pfeifer, M, Mothes, S, Stärk, H-J, Piechotta, C, Mattusch, J, Reemtsma, T (2016) Determination of moderately polar arsenolipids and mercury speciation in freshwater fish of the River Elbe (Saxony, Germany). Environmental Pollution 208: 458466.CrossRefGoogle ScholarPubMed
Barocas, A, Vega, CM, Pardo, AA, Flores, JA, Fernandez, LE, Groenendijk, J et al. (2023) Local intensity of artisanal gold-mining drives mercury accumulation in neotropical oxbow lake fishes. Science of the Total Environment 886: 164024.CrossRefGoogle ScholarPubMed
Beck, DL (1977) Pesticide and Heavy Metal Residues in Louisiana River Otter. MSc thesis. College Station, TX, USA: Texas A&M University [www document]. URL https://hdl.handle.net/1969.1/ETD-TAMU-1977-THESIS-B393 Google Scholar
Brasil (2018) Decreto nº 9.470, de 14 de agosto de 2018 [www document]. URL http://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/decreto/D9470.htm Google Scholar
Callil, C, Junk, WJ (2011) Goldmining near Poconé: environmental, social, and economic impact. In: Junk, WJ, da Silva, CJ, Nunes da Cunha, C, Wantzen, KM (eds), The Pantanal: Ecology, Biodiversity and Sustainable Management of a Large Neotropical Seasonal Wetland (pp. 693715). Sofia, Bulgaria: Pensoft.Google Scholar
Carter, SK, Rosas, FCW (1997) Biology and conservation of the giant otter Pteronura brasiliensis . Mammal Review 27: 126.CrossRefGoogle Scholar
Davidson, NC (2014) How much wetland has the world lost? Long-term and recent trends in global wetland area. Marine and Freshwater Research 65: 934941.CrossRefGoogle Scholar
Del Lama, SN, Rocha, CD, Jardim, WF, Tsai, JS, Frederick, PC (2011) Sedentary nestlings of Wood Stork as monitors of mercury contamination in the gold-mining region of the Brazilian Pantanal. Environmental Research 111: 10911095.CrossRefGoogle ScholarPubMed
Diringer, SE, Feingold, BJ, Ortiz, EJ, Gallis, JA, Araújo-Flores, JM, Berky, A et al. (2015) River transport of mercury from artisanal and small-scale gold-mining and risks for dietary mercury exposure in Madre de Dios, Peru. Environmental Science: Processes & Impacts 17: 478487.Google ScholarPubMed
Eisler, R (2006) Mercury Hazards to Living Organisms. Boca Raton, FL, USA: CRC Press.CrossRefGoogle Scholar
Fonseca, FRD, Malm, O, Waldemarin, HF (2005) Mercury levels in tissues of giant otters (Pteronura brasiliensis) from the Rio Negro, Pantanal, Brazil. Environmental Research 98: 368371.CrossRefGoogle Scholar
Gao, BC (1996) NDWI: a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment 58: 257266.CrossRefGoogle Scholar
Grajewska, A, Falkowska, L, Saniewska, D, Pawliczka, I (2020) Fur and faeces – routes of mercury elimination in the Baltic grey seal (Halichoerus grypus grypus). Science of the Total Environment 717: 137050.CrossRefGoogle ScholarPubMed
Groenendijk, J, Marmontel, M, Van Damme, P, Schenck, C, Schenck, C, Wallace, R (2021) Pteronura brasiliensis. In: The IUCN Red List of Threatened Species 2021: e.T18711A164580466 [www document]. URL https://doi.org/10.2305/IUCN.UK.2021-3.RLTS.T18711A164580466.en CrossRefGoogle Scholar
Gutleb, AC (2000) The role of pollutants in the decline of the otter. In: Conroy, JWH, Yoxon, P, Gutleb, AC (eds), Proceedings of the First Otter Toxicology Conference (pp. 2940). Isle of Skye, UK: Journal of the International Otter Survival Fund.Google Scholar
Gutleb, AC, Schenck, C, Staib, E (1997) Giant otter (Pteronura brasiliensis) at risk? Total mercury and methylmercury levels in fish and otter scats, Peru. Ambio 26: 511514.Google Scholar
Hamilton, SK, Sippel, SJ, Melack, JM (1996) Inundation patterns in the Pantanal wetland of South America determined from passive microwave remote sensing. Archiv für Hydrobiologie 137: 123.CrossRefGoogle Scholar
Harris, MB, Tomas, W, Mourão, G, Da Silva, CJ, Guimarães, E, Sonoda, F, Fachim, E (2005) Safeguarding the Pantanal wetlands: threats and conservation initiatives. Conservation Biology 19: 714720.CrossRefGoogle Scholar
Hylander, LD, Pinto, FN, Guimarães, JRD, Meili, M, Oliveira, LJ, Castro e Silva, E (2000) Fish mercury concentration in the Alto Pantanal, Brazil: influence of season and water parameters. Science of the Total Environment 261: 920.CrossRefGoogle ScholarPubMed
Hyvärinen, H, Tyni, P, Nieminen, P (2003) Effects of moult, age, and sex on the accumulation of heavy metals in the otter (Lutra lutra) in Finland. Bulletin of Environmental Contamination and Toxicology 70: 278284.Google ScholarPubMed
Kalisińska, E, Lanocha-Arendarczyk, N, Kosik-Bogacka, D, Budis, H, Pilarczyk, B, Tomza-Marciniak, A et al. (2017) Muscle mercury and selenium in fishes and semiaquatic mammals from a selenium-deficient area. Ecotoxicology and Environmental Safety 136: 2430.CrossRefGoogle ScholarPubMed
Kuhn, R (2009) Comparative Analysis of Structural and Functional Hair Coat Characteristics, Including Heat Loss Regulation, in the Lutrinae (Carnivora: Mustelidae). PhD thesis. Hamburg, Germany: University of Hamburg.Google Scholar
Maltby, E, Acreman, MC (2011) Ecosystem services of wetlands: pathfinder for a new paradigm. Hydrological Sciences Journal 56: 13411359.CrossRefGoogle Scholar
Marengo, JA, Cunha, AP, Cuartas, LA, Deusdara, KR, Broedel, E, Seluchi, ME et al. (2021) Extreme Drought in the Brazilian Pantanal in 2019–2020: characterization, causes, and impacts. Frontiers in Water 3: 639204.CrossRefGoogle Scholar
Marmontel, M (2023) Mining impacts on aquatic mammals of Brazilian Amazonia. In: Spironello, WR, Barnett, AA, Lynch, JW, Bobrowiec, PED, Boyle, SA (eds), Amazonian Mammals (pp. 405435). Cham, Switzerland: Springer International Publishing.CrossRefGoogle Scholar
May-Júnior, JA, Quigley, H, Hoogesteijn, R, Tortato, FR, Devlin, A, Carvalho Júnior, RM et al. (2018) Mercury content in the fur of jaguars (Panthera onca) from two areas under different levels of gold-mining impact in the Brazilian Pantanal. Anais da Academia Brasileira de Ciências 90: 21292139.CrossRefGoogle ScholarPubMed
Nakazawa, E, Ikemoto, T, Hokura, A, Terada, Y, Kunito, T, Tanabe, S et al. (2011) The presence of mercury selenide in various tissues of the striped dolphin: evidence from μ-XRF-XRD and XAFS analyses. Metallomics 3: 719725.CrossRefGoogle ScholarPubMed
O’Connor, DJ, Nielsen, SW (1981) Environmental survey of methylmercury levels in wild mink (Mustela vison) and otter (Lutra canadensis) from the northeastern United States and experimental pathology of methylmercurialism in the otter. In: Chapman, JA, Pursley, D (eds), Proceedings of the Worldwide Furbearers Conference (pp. 17281745). Frostburg, MD, USA: Worldwide Furbearer Conference.Google Scholar
Pedroso, NM, Dias, SV, Diniz-Reis, TR, Santos-Reis, M, Verdade, LM (2018) Non-invasive hair sampling of Neotropical otters. Biota Neotropica 18: E20180579.CrossRefGoogle Scholar
Pereira, LE, Amorim, GM, Grigio, AM, Paranhos Filho, AC (2018) Análise comparativa entre métodos de índice de água por diferença normalizada (NDWI) em área úmida continental. Anuário do Instituto de Geociências 41: 654662.CrossRefGoogle Scholar
Puls, R (1994) Mineral Levels in Animal Health: Diagnostic Data. Clearbrook, CA, USA: Sherpa International.Google Scholar
QGIS.org (2022) QGIS Geographic Information System version 3.26.0. QGIS Association [www document]. URL http://www.qgis.org Google Scholar
R Core Team (2022) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing [www document]. URL https://www.R-project.org Google Scholar
Rodrigues, LA, Leuchtenberger, C, Da Silva, VCF (2013) Avaliação do risco de extinção da ariranha Pteronura brasiliensis (Zimmermann, 1780) no Brasil. Biodiversidade Brasileira 3: 228239.CrossRefGoogle Scholar
Soresini, G, da Silva, FA, Leuchtenberger, C, Mourão, G (2021) Total mercury concentration in the fur of free-ranging giant otters in a large Neotropical floodplain. Environmental Research 198: 110483.CrossRefGoogle Scholar
USGS (2022) Earth Explorer, Satellite images [www document]. URL https://earthexplorer.usgs.gov Google Scholar
Utreras, V, Jorgenson, JP (2003) Aspectos sobre lacacería y la distribución actual e histórica de la nutria gigante (Pteronura brasiliensis) em la Amazonia Ecuatoriana. Manejo de fauna silvestre em la Amazonía y Latinoamérica, selección de trabajos V Congreso Internacional. Conservación y Manejo in situ. Bogotá, Colombia: CITES, Fundación Natura.Google Scholar
Vieira, LM, Nunes, VS, Amaral, MCA, Oliveira, AC, Hauser-Davis, RA, Campos, RC (2011) Mercury and methyl mercury ratios in caimans (Caiman crocodiles yacare) from the Pantanal area. Journal of Environmental Monitoring 13: 280287.CrossRefGoogle ScholarPubMed
Wiener, JG, Krabbenhoft, DP, Heinz, GH, Scheuhammer, AM (2002) Ecotoxicology of mercury. In: Hoffman, DJ, Rattner, BA, Burton, GA, Cairns, J Jr (eds), Handbook of Ecotoxicology (pp. 409463). Boca Raton, FL, USA: Lewis Publishers.Google Scholar
Wolfe, MF, Schwarzbach, S, Sulaiman, RA (1998) Effects of mercury on wildlife: a comprehensive review. Environmental Toxicology and Chemistry 17: 146160.CrossRefGoogle Scholar
Wood, SN (2017) Generalized Additive Models: An Introduction with R. Boca Raton, FL, USA: Chapman and Hall/CRC Press.CrossRefGoogle Scholar
Zhang, H (2014) Impacts of Selenium on the Biogeochemical Cycles of Mercury in Terrestrial Ecosystems in Mercury Mining Areas. Berlin, Germany: Springer-Verlag.CrossRefGoogle Scholar
Supplementary material: File

Foerster et al. supplementary material 1

Foerster et al. supplementary material
Download Foerster et al. supplementary material 1(File)
File 42.2 KB
Supplementary material: File

Foerster et al. supplementary material 2

Foerster et al. supplementary material
Download Foerster et al. supplementary material 2(File)
File 14.7 KB