Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T14:46:27.892Z Has data issue: false hasContentIssue false

Ground-dwelling spider families and forest structure variables for monitoring ecologically sustainable logging operations

Published online by Cambridge University Press:  01 July 2021

Ana Sofía Alcalde
Affiliation:
Instituto de Ecorregiones Andinas (INECOA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Jujuy (UNJu), Alberdi 47, 4600 Jujuy, Argentina
Natalia Politi*
Affiliation:
Instituto de Ecorregiones Andinas (INECOA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Jujuy (UNJu), Alberdi 47, 4600 Jujuy, Argentina
Sandra Rodríguez-Artigas
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Avenida Bolivia 5150, 4400 Salta, Argentina
José Antonio Corronca
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Avenida Bolivia 5150, 4400 Salta, Argentina
Luis Osvaldo Rivera
Affiliation:
Instituto de Ecorregiones Andinas (INECOA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Jujuy (UNJu), Alberdi 47, 4600 Jujuy, Argentina
*
Author for correspondence: Dr Natalia Politi, Email: natipoliti@fca.unju.edu.ar

Summary

Approximately 80% of neotropical forests are subject to unsustainable economic practices, such as logging. Spiders are a megadiverse taxonomic group with a particularly great diversity in forest ecosystems and could help indicate the sustainability of logging operations. At six sites at 400–700 m altitude in the piedmont forest of north-western Argentina, spiders collected using pitfall traps and forest structure and spider assemblage structure variables were quantified in order to examine the association between them and to identify indicator spider families. Logging changes forest structure and seems to generate an unsuitable habitat for spiders associated with mature forests. The family taxonomic level is a good surrogate for spider morphospecies. The Mysmenidae, Nemesiidae, Theridiidae, Pholcidae, Hahniidae and Tetragnathidae families were associated with upper canopy cover of 20% or more and with more than two dead fallen trees per 0.1 ha and >15 live trees per 0.1 ha, found in unlogged forests. Bearing in mind that the piedmont forest of north-western Argentina is being logged in the absence of sustainability criteria, we suggest including spiders in monitoring schemes to complement the information obtained from more readily used groups, such as charismatic vertebrates.

Type
Research Paper
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of Foundation for Environmental Conservation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguilar-Amuchastegui, N, Henebry, G (2007) Assessing sustainability indicators for tropical forests: spatio-temporal heterogeneity, logging intensity, and dung beetle communities. Forest Ecology and Management 253: 5667.CrossRefGoogle Scholar
Alcalde, A, Politi, N, Corronca, J, Rivera, L (2018) Cambios en los ensambles y gremios de arañas (Araneae) en sitios con aprovechamiento forestal de la selva pedemontana del noroeste argentino. Neotropical Biology and Conservation 13: 138147.Google Scholar
Allan, J, Venter, O, Watson, J (2017) Data descriptor: temporally inter- comparable maps of terrestrial wilderness and the last of the wild. Scientific Data 4: 18.CrossRefGoogle Scholar
Anderson, M, Walsh, D (2013) PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecological Monographs 83: 557574.CrossRefGoogle Scholar
Avalos, G, Achitte-Schmutzler, H, De los Santos, M (2018) Caracterización de la fauna de arañas en monocultivos de Eucalyptus y Pinus de la Reserva del Iberá, Corrientes, Argentina. Revista Mexicana de Biodiversidad 89: 134148.CrossRefGoogle Scholar
Baker, M, King, R (2010) A new method for detecting and interpreting biodiversity and ecological community thresholds. Methods in Ecology and Evolution 1: 2537.CrossRefGoogle Scholar
Baldissera, R, Oliveira de Quadros, S, Galeti, G, Lopes Rodrigues, E, Lazzarotto, L, de Oliveira, A (2020) Spider assemblage structure and functional diversity patterns in clear-cut, logged and undisturbed areas in a large Atlantic forest remnant. Canadian Journal of Forest Research 50: 608614.CrossRefGoogle Scholar
Balzarini, M, Gonzalez, L, Tablada, M, Casanoves, F, Di Rienzo, J, Robledo, C (2008) Manual del usuario . Córdoba, Argentina: Editorial Brujas.Google Scholar
Basset, Y, Charles, E, Hammond, D, Brown, V (2001) Short-term effects of canopy openness on insect herbivores in a rain forest in Guyana. Journal of Applied Ecology 38: 10451058.CrossRefGoogle Scholar
Bicknell, J, Peres, C (2010) Vertebrate population responses to reduced-impact logging in a neotropical forest. Forest Ecology and Management 259: 22672275.CrossRefGoogle Scholar
Bicknell, J, Phelps, S, Davies, R, Mann, D, Struebig, M, Davies, Z (2014) Dung beetles as indicators for rapid impact assessments: evaluating best practice forestry in the Neotropics. Ecological Indicators 43: 154161.CrossRefGoogle Scholar
Blanco Vargas, E, Amat García, G, Flórez Daza, E (2003) Araneofauna orbitelar (Araneae: Orbiculiriae) de los Andes de Colombia: comunidades en hábitats bajo regeneración. Revista Ibérica de Aracnología 7: 189203.Google Scholar
Borcard, D, Gillet, F, Legendre, P (2011) Numerical Ecology with R. New York, NY, USA: Springer Science.CrossRefGoogle Scholar
Brennan, K, Ashby, L, Majer, J, Moir, M, Koch, J (2006) Simplifying assessment of forest management practices for invertebrates: how effective are higher taxon and habitat surrogates for spiders following prescribed burning? Forest Ecology and Management 231: 138154.CrossRefGoogle Scholar
Brown, A, Blendinger, P, Lomáscolo, T, García Bes, P, 2009. Selva pedemontana de las yungas: Historia natural, ecología y manejo de un ecosistema en peligro. Yerba Buena, Argentina: Ediciones del Subtrópico.Google Scholar
Brown, A, Grau, H, Malizia, L, Grau, A (2001) Argentina. In: Bosques nublados del neotrópico, eds Kapelle, M, Brown, A (pp. 623698). Santo Domingo de Heredia, Costa Rica: INBio.Google Scholar
Bunnell, F, Dunsworth, G (2009) Forestry and Biodiversity: Learning How to Sustain Biodiversity in Managed Forests. Toronto, Canada: UBC Press.Google Scholar
Burivalova, Z, Şekercioǧlu, Ç, Koh, L (2014) Thresholds of logging intensity to maintain tropical forest biodiversity. Current Biology 24: 18931898.CrossRefGoogle ScholarPubMed
Cardoso, P (2009) Standardization and optimization of arthropod inventories – the case of Iberian spiders. Biodiversity and Conservation 18: 39493962.CrossRefGoogle Scholar
Cardoso, P, Erwin, T, Borges, P, New, T (2011) The seven impediments in invertebrate conservation and how to overcome them. Biological Conservation 144: 26472655.CrossRefGoogle Scholar
Cava, M, Corronca, J, Echeverría, A (2013) Diversidad alfa y beta de los artrópodos en diferentes ambientes del Parque Nacional los Cardones, Salta (Argentina). Revista de Biología Tropical 61: 17851798.CrossRefGoogle Scholar
Cayuela, L, Granzow-de la Cerda, I (2012) Biodiversidad y conservación de bosques neotropicales. Ecosistemas 21: 15.Google Scholar
Cazzolla Gatti, R, Castaldi, S, Lindsell, J, Coomes, D, Marchetti, M, Maesano, M et al. (2014) The impact of selective logging and clearcutting on forest structure, tree diversity and above-ground biomass of African tropical forests. Ecological Research 30: 119132.CrossRefGoogle Scholar
Cernecká, L, Mihál, I, Gajdos, P, Jarcuska, B (2020) The effect of canopy openness of European beech (Fagus sylvatica) forests on ground-dwelling spider communities. Insect Conservation and Diversity 13: 250261.CrossRefGoogle Scholar
Chao, A, Jost, L (2012) Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93: 25332547.CrossRefGoogle ScholarPubMed
Clarke, F, Pio, D, Racey, P (2005) A Comparison of logging systems and bat diversity in the Neotropics. Conservation Biology 19: 11941204.CrossRefGoogle Scholar
Clarke, K (1993) Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117143.CrossRefGoogle Scholar
Cruz, I, Torres, V, González-Reyes, A, Corronca, J (2018) Eficiencia de trampas de caída y suficiencia taxonómica en comunidades de arañas (Araneae) epígeas en tres ecorregiones del noroeste argentino. Revista de Biología Tropical 66: 204217.CrossRefGoogle Scholar
Darwall, W, Holland, R, Smith, K, Allen, D, Brooks, E, Katarya, V et al. (2011) Implications of bias in conservation research and investment for freshwater species. Conservation Letters 4: 474482.CrossRefGoogle Scholar
Di Rienzo, J, Casanoves, F, Balzarini, M, Gonzalez, L, Tablada, M, Robledo, C (2016) InfoStat version 2016. Grupo InfoStat, FCA, Universidad Nacional de Córdoba [www document]. URL http://www.infostat.com.ar Google Scholar
Dufrêne, M, Legendre, P (2016) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345366.Google Scholar
Escudero, A, Gavilán, R, Rubio, A (1994) Una breve revisión de técnicas de análisis multivariantes aplicables en fitosociología. Botanica Complutensis 19: 938.Google Scholar
FAO (2011) State of the World’s Forests. Rome, Italy: FAO.Google Scholar
Ferretti, N, Pompozzi, G, Copperi, S, González, A, Pérez-Miles, F (2010) Arañas mygalomorphae de la provincia de Buenos Aires, Argentina: clave para la determinación de especies. BioScriba 3: 1534.Google Scholar
Ferretti, N, Pompozzi, G, Copperi, S, Schwerdt, L, González, A, Pérez-Miles, F (2014) La comunidad de arañas Mygalomorphae (Araneae) de la Reserva Natural Sierra del Tigre, Tandilia, Buenos Aires, Argentina. Revista Mexicana de Biodiversidad 85: 308314.CrossRefGoogle Scholar
Fimbel, R, Grajal, A, Robinson, J (2001) The Cutting Edge: Conserving Wildlife in Logged Tropical Forest. New York, NY, USA: Columbia University Press.CrossRefGoogle Scholar
Floren, A, Deeleman-Reinhold, C (2005) Diversity of arboreal spiders in primary and disturbed tropical forests. Journal of Arachnology 33: 323333.CrossRefGoogle Scholar
Foélix, R (2011) Biology of Spiders. New York, NY, USA: Oxford University Press.Google Scholar
França, FM, Frazão, FS, Korasaki, V, Louzada, J, Barlow, J (2017) Identifying thresholds of logging intensity on dung beetle communities to improve the sustainable management of Amazonian tropical forests. Biological Conservation 216: 115122.CrossRefGoogle Scholar
Fuller, L, Newman, M, Irwin, S, Kelly, T, O’Halloran, J (2014) Ground-dwelling spider diversity in rare European oak and yew woodlands and the impact of grazing. Biodiversity and Conservation 23: 19111929.CrossRefGoogle Scholar
Georgiev, K, Chao, A, Castro, J, Chen, J, Choi, C, Fontaine, J et al. (2020) Salvage logging changes the taxonomic, phylogenetic and functional successional trajectories of forest bird communities. Journal of Applied Ecology 57: 11031112.CrossRefGoogle Scholar
Gill, A, Woinarski, J, York, A (1999) Australia’s Biodiversity – Responses to Fire: Plants, Birds and Invertebrates. Biodiversity Technical Paper No. 1. Canberra, Australia: Environment Australia.Google Scholar
Grismado, C, Goloboff, P (2014) Nemesiidae y Microstigmatidae. In: Biodiversidad de artrópodos argentinos , Vol. 3, eds Roig Juñent, S, Claps, L, Morrone, J (pp. 111118). San Miguel de Tucumán, Argentina: Editorial INSUE – UNT.Google Scholar
Grismado, C, Ramírez, M, Izquierdo, M (2014) Araneae: Taxonomía, diversidad y clave de indentificación de familias de la Argentina. In: Biodiversidad de artrópodos argentinos , Vol. 3, eds Roig Juñent, S, Claps, L, Morrone, J (pp. 5593). San Miguel de Tucumán, Argentina: Editorial INSUE – UNT.Google Scholar
Halaj, J, Halpern, C, Yi, H (2008) Responses of litter-dwelling spiders and carabid beetles to varying levels and patterns of green-tree retention. Forest Ecology and Management 255: 887900.CrossRefGoogle Scholar
Heino, J, Soininen, J (2007) Are higher taxa adequate surrogates for species-level assemblage patterns and species richness in stream organisms? Conservation Biology 37: 7889.CrossRefGoogle Scholar
Hilty, J, Merenlender, A (2000) Faunal indicator taxa selection for monitoring ecosystem health. Biological Conservation 92: 185197.CrossRefGoogle Scholar
Hsieh, T, Ma, K, Chao, A (2019) Interpolation and extrapolation for species diversity package. Package ‘iNEXT’. Version 2.0.19 [www document]. URL https://cran.r-project.org/web/packages/iNEXT/iNEXT.pdf Google Scholar
Huang, P, Lin, H, Lin, C, Tso, I (2014) The effect of thinning on ground spider diversity and microenvironmental factors of a subtropical spruce plantation forest in East Asia. European Journal of Forest Research 133: 919930.CrossRefGoogle Scholar
Huang, P, Tso, I, Lin, H, Lin, L, Lin, C (2011) Effects of thinning on spider diversity of an East Asian subtropical plantation forest. Zoological Studies 50: 705717.Google Scholar
Huber, B (2014) Pholcidae. In: Biodiversidad de artrópodos argentinos , Vol. 3, eds Roig Juñent, S, Claps, L, Morrone, J (pp. 131140). San Miguel de Tucumán, Argentina: Editorial INSUE – UNT.Google Scholar
King, R, Baker, M (2014) Use, misuse, and limitations of threshold indicator taxa analysis (TITAN) for natural resource management. In: Application of Threshold Concept in Natural Resource Decision Making, ed. Guntenspergen, G (pp. 231254). New York, NY, USA: Springer.CrossRefGoogle Scholar
Košulič, O, Michalko, R, Hula, V (2016) Impact of canopy openness on spider communities: implications for conservation management of formerly coppiced oak forests. PLoS One 11: e0148585.CrossRefGoogle ScholarPubMed
Larrivée, M, Fahrig, L, Drapeau, P (2005) Effects of a recent wildfire and clearcuts on ground-dwelling boreal forest spider assemblages. Canadian Journal of Forest Research 35: 25752588.CrossRefGoogle Scholar
Lin, S, You, M, Vasseur, L, Yang, G, Liu, F, Guo, F (2012) Higher taxa as surrogates of species richness of spiders in insect-resistant transgenic rice. Insect Science 19: 419425.CrossRefGoogle Scholar
Lubin, Y, Angel, N, Assaf, N (2011) Ground spider communities in experimentally disturbed Mediterranean woodland habitats. Arachnologische Mitteilungen 40: 8593.CrossRefGoogle Scholar
Macchi, L, Baumann, M, Bluhm, H, Baker, M, Levers, C, Grau, R, Kuemmerle, T (2019) Thresholds in forest bird communities along woody vegetation gradients in the south American dry Chaco. Journal of Applied Ecology 56: 629639.CrossRefGoogle Scholar
Maclaurin, J, Sterelny, K (2009) What Is Biodiversity? Chicago, IL, USA: University of Chicago Press.Google Scholar
Malcolm, J, Ray, J (2000) Influence of timber extraction routes on central African small-mammal communities, forest structure, and tree diversity. Conservation Biology 14: 16231638.Google Scholar
Malumbres Olarte, J, Vink, C, Ross, J, Cruickshank, R, Paterson, A (2013) The role of habitat complexity on spider communities in native alpine grasslands of New Zealand. Insect Conservation and Diversity 6: 124134.CrossRefGoogle Scholar
Mammola, S, Godacre, S, Isaia, M (2018) Climate change may drive cave spiders to extinction. Ecography 41: 233243.CrossRefGoogle Scholar
Mann, H, Whitney, D (1947) On a test of whether one of two random variables is stochastically larger than the other. Journal of Statistical Computing and Simulation 13: 4148.Google Scholar
Maya Morales, J, Ibarra Núñez, G, León Cortés, J, Infante, F (2012) Understory spider diversity in two remnants of tropical montane cloud forest in Chiapas, Mexico. Journal of Insect Conservation 16: 2538.CrossRefGoogle Scholar
McIver, J, Parsons, G, Moldenke, A (1992) Litter spider succession after clear-cutting in a western coniferous forest. Canadian Journal of Forest Research 22: 984992.CrossRefGoogle Scholar
Melic, A (2001) Arañas endémicas de la península Ibérica e Islas Baleares (Arachnida: Araneae). Revista Ibérica de Arancnología 4: 3592.Google Scholar
Mostacedo, B, Fredericksen, T (2001) Regeneración y silvicultura de bosques tropicales en Bolivia. Santa Cruz, Bolivia: Proyecto de manejo forestal sostenible (BOLFOR).Google Scholar
Muff, P, Kropf, C, Frick, H, Nentwig, W, Schmidt Entling, M (2009) Co-existence of divergent communities at natural boundaries: spider (Arachnida: Araneae) diversity across an alpine timberline. Insect Conservation and Diversity 2: 3644.CrossRefGoogle Scholar
Nadal, M, Achitte-Schmutzler, H, Zanone, I, Gonzalez, Y, Avalos, G (2018) Diversidad estacional de arañas en una reserva natural del Espinal en Corrientes, Argentina. Ecología 40: 129143.Google Scholar
Nogueira, A, Pinto da Rocha, R (2016) The effects of habitat size and quality on the orb-weaving spider guild (Arachnida: Araneae) in an Atlantic Forest fragmented landscape. Journal of Arachnology 44: 3645.CrossRefGoogle Scholar
Oberprieler, S, Andersen, A, Gillespie, G, Einoder, L (2019) Vertebrates are poor umbrellas for invertebrates: cross-taxon congruence in an Australian tropical savanna. Ecosphere 10: 118.CrossRefGoogle Scholar
Oksanen, J, Guillaume Blanchet, F, Friendly, M, Kindt, R, Legendre, P, McGlinn, D et al. (2019) Community ecology package. Package ‘vegan’. Version 2.5-6 [www document]. URL https://cran.r-project.org/web/packages/vegan/index.html Google Scholar
Olson, D, Dinerstein, E, Wikramanayake, E, Burgess, N, Powell, G, Underwood, E et al. (2001) Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51: 933938.CrossRefGoogle Scholar
Oxbrough, A, Gittings, T, Halloran, J, Giller, P, Smith, G (2005) Structural indicators of spider communities across the forest plantation cycle. Forest Ecology and Management 212: 171183.CrossRefGoogle Scholar
Pearce, J, Venier, L (2006) The use of ground beetles (Coleoptera: Carabidae) and spiders (Araneae) as bioindicators of sustainable forest management: a review. Ecological Indicators 6: 780793.CrossRefGoogle Scholar
Pereira, J, Nogueira Cardoso, E, Brescovit, A, Iuñes de Oliveira Filho, L, Segat, J, Riviera Duarte Maluche Baretta, C, Baretta, D (2021) Soil spiders (Arachnida: Araneae) in native and reforested Araucaria forests. Scientia Agricola 78: 111.CrossRefGoogle Scholar
Pereira Souza, J, Beggiato Baccaro, F, Lemes Landeiro, V, Franklin, E, Magnusson, W, Costa Lima Pequeno, P, Oliveira Fernandes, I (2016) Taxonomic sufficiency and indicator taxa reduce sampling costs and increase monitoring effectiveness for ants. Diversity and Distributions 22: 111122.CrossRefGoogle Scholar
Petcharad, B, Miyashita, T, Gale, G, Sotthibandhu, S, Bumrungsri, S (2016) Spatial patterns and environmental determinants of community composition of web-building spiders in understory across edges between rubber plantations and forests. Journal of Arachnology 44: 182193.CrossRefGoogle Scholar
Petkova, E, Larson, A, Pacheco, P (2011) Gobernanza forestal y REDD+: Desafíos para las políticas y mercados en América Latina. Bogor, Indonesia: CIFOR.Google Scholar
Pinzón, J, Spence, J, Langor, D (2011) Spider assemblages in the overstory, understory, and ground layers of managed stands in the western boreal mixedwood forest of Canada. Community and Ecosystem Ecology 40: 797808.Google ScholarPubMed
Pinzón, J, Spence, J, Langor, D (2012) Responses of ground-dwelling spiders (Araneae) to variable retention harvesting practices in the boreal forest. Forest Ecology and Management 266: 4253.CrossRefGoogle Scholar
Pinzón, J, Spence, J, Langor, D (2013) Diversity, species richness, and abundance of spiders (Araneae) in different strata of boreal white spruce stands. The Canadian Entomologist 145: 6176.CrossRefGoogle Scholar
Politi, N, Rivera, L (2019) Limitantes y avances para alcanzar el manejo forestal sostenible en las Yungas Australes. Ecología Austral 29: 138145.CrossRefGoogle Scholar
Prado, D (1995) Selva pedemontana: contexto regional y lista florística de un ecosistema en peligro. In: Investigación, conservación y desarrollo en selvas subtropicales de montaña, proyecto de desarrollo agroforestal, eds Brown, A, Grau, H (pp. 1952). Tucumán, Argentina: Laboratorio de investigaciones ecológicas de las Yungas.Google Scholar
Raub, F, Höfer, H, Scheuermann, L, Brandl, R (2014) The conservation value of secondary forests in the southern Brazilian Mata Atlântica from a spider perspective. Journal of Arachnology 45: 5273.CrossRefGoogle Scholar
Rinaldi, I, Ruiz, G (2002) Comunidades de aranhas (Araneae) em cultivos de seringueira (Hevea brasiliensis Muell. Arg.) no Estado de São Paulo. Revista Brasileira de Zoologia 19: 781788.CrossRefGoogle Scholar
Rivera, L, Armbrecht, I (2005) Diversidad de tres gremios de hormigas en cafetales de sombra, de sol y bosques de Risaralda. Revista Colombiana de Entomología 31: 8996.Google Scholar
Rivera, L, Politi, N, Lizárraga, L, Chalukian, S, de Bustos, S, Ruíz de los Llanos, E (2015) Áreas prioritarias de conservación para especies amenazadas de las Yungas Australes de Salta y Jujuy. San Salvador de Jujuy, Argentina: Fundación CEBio.Google Scholar
Rocha, A, González-Reyes, A, Corronca, J, Rodríguez-Artigas, S, Doma, I, Repp, E, Acosta, X (2016) Tardigrade diversity: an evaluation of natural and disturbed environments of the province of Salta (Argentina). Zoological Journal of the Linnean Society 178: 755764.CrossRefGoogle Scholar
Rosa, M, Santos, J, Brescovit, A, Mafra, A, Baretta, D (2018) Spiders (Arachnida: Araneae) in agricultural land use systems in subtropical environments. Revista Brasileira de Ciencia do Solo 42: 116.CrossRefGoogle Scholar
RStudio (2019) RStudio version 1.2.133 [www document]. URL http://www.rstudio.com Google Scholar
Rubio, G, Corronca, J, Damborsky, M (2008) Do spider diversity and assemblages change in different contiguous habitats? A case study in the protected habitats of the humid Chaco ecoregion, northeast Argentina. Community and Ecosystem Ecology 37: 419430.Google ScholarPubMed
Rubio, G, Damborsky, M, Corronca, J (2004) Araneofauna (Arachnida, Araneae) en un área natural protegida de la provincia de Corrientes, Argentina. Comunicaciones Científicas y Tecnológicas B-048: 7173.Google Scholar
Spence, J, Pinzón, J (2010) Bark-dwelling spider assemblages (Araneae) in the boreal forest: dominance, diversity, composition and life-histories. Journal of Insect Conservation 14: 439458.Google Scholar
Sutherland, W (2006) Ecological Census Techniques. A Handbook. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Tenorio Monge, C, Solano Durán, J, Castillo Ugalde, M (2009) Evaluación de la composición florística y estructural en un bosque primario intervenido en la zona norte de Costa Rica. Kurú: Revista Forestal (Costa Rica) 6: 111.Google Scholar
Topping, C, Sunderland, K (1992) Limitations to the use of pitfall traps in ecological studies exemplified by a study of spiders in a field of winter wheat. Journal of Applied Ecology 29: 485491.CrossRefGoogle Scholar
Torres, V, González-Reyes, A, Corronca, J (2017) Diversidad taxonómica y funcional de arañas (Araneae) epígeas en bosques nativos de las Yungas (Salta, Argentina). Ecología 39: 326344.Google Scholar
Uehara Prado, M (2009) Artrópodes como indicadores biológicos de perturbacao antrópica. Campinas, Brazil: Universidade Estadual de Campinas.Google Scholar
Van Den Wollenberg, A (1977) Redundancy analysis an alternative for canonical correlation analysis. Psychometrika 42: 207219.CrossRefGoogle Scholar
Wei, T, Simko, V, Levy, M, Xie, Y, Jin, Y, Zemla, J (2017) Visualization of a correlation matrix. Package ‘corrplot’. Version 0.84 [www document]. URL https://cran.r-project.org/web/packages/corrplot/corrplot.pdf Google Scholar
Wilcoxon, F (1945) Individual comparison by ranking methods. Biometrics 3: 119122.CrossRefGoogle Scholar
Woltmann, S (2003) Bird community responses to disturbance in a forestry concession in lowland Bolivia. Biodiversity and Conservation 12, 19211936.CrossRefGoogle Scholar
World Spider Catalog (2021) World Spider Catalog. Version 21.0. Natural history museum Bern, online (revised on March 2021). doi: 10.24436/2 [www document]. URL http://www.wsc.nmbe.ch/ CrossRefGoogle Scholar
Zou, Y, Van Der Werf, W, Liu, Y, Axmacher, J (2019) Predictability of species diversity by family diversity across global terrestrial animal taxa. Global Ecology and Biogeography 29: 629644.CrossRefGoogle Scholar
Supplementary material: File

Alcalde et al. supplementary material

Alcalde et al. supplementary material 1

Download Alcalde et al. supplementary material(File)
File 838.8 KB
Supplementary material: File

Alcalde et al. supplementary material

Alcalde et al. supplementary material 2

Download Alcalde et al. supplementary material(File)
File 26.6 KB
Supplementary material: File

Alcalde et al. supplementary material

Alcalde et al. supplementary material 3

Download Alcalde et al. supplementary material(File)
File 402.9 KB
Supplementary material: File

Alcalde et al. supplementary material

Alcalde et al. supplementary material 4

Download Alcalde et al. supplementary material(File)
File 24.3 KB