Hostname: page-component-54dcc4c588-sdd8f Total loading time: 0 Render date: 2025-09-11T04:32:08.108Z Has data issue: false hasContentIssue false

Effect of land-use changes on the space–time distribution of ant diversity in the south-western Brazilian Amazon

Published online by Cambridge University Press:  01 September 2025

Francisco Matheus da Silva Sales*
Affiliation:
Programa de Pós-Graduação em Ecologia e Manejo de Recursos Naturais, Universidade Federal do Acre, Rio Branco, Acre, Brazil Laboratório de Ecologia de Formigas, Universidade Federal do Acre, Rio Branco, Acre, Brazil
Jean Carlo Gonçalves Ortega
Affiliation:
Programa de Pós-Graduação em Ecologia e Manejo de Recursos Naturais, Universidade Federal do Acre, Rio Branco, Acre, Brazil
Fernando Augusto Schmidt
Affiliation:
Programa de Pós-Graduação em Ecologia e Manejo de Recursos Naturais, Universidade Federal do Acre, Rio Branco, Acre, Brazil Laboratório de Ecologia de Formigas, Universidade Federal do Acre, Rio Branco, Acre, Brazil Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Rio Branco, Acre, Brazil
*
Corresponding author: Francisco Matheus da Silva Sales; Email: matheussalles07@gmail.com

Summary

The rapid advancement of satellite-based monitoring technologies and niche modelling present unprecedented opportunities to enhance conservation efforts, especially over large areas, yet their practical application in guiding conservation strategies remains limited. This study examines how land-use changes affect ant diversity in the Acre River basin, south-western Brazilian Amazon. Using niche modelling with climatic, environmental and land-use data, we examined species distributions for three ant guilds – forest specialists, generalists and open-habitat specialists – across 1985, 2019 and 2050. The results show that forest specialists are concentrated in the eastern regions but are projected to decline, while open-habitat specialists – dominant in the south-west – are expected to increase in distribution. Generalists displayed broader, stable distributions. These patterns highlight the critical role of forest conservation in preserving the diversity of forest-specialist species and the threat posed by Amazon forest conversion, and they point to the need for strategic landscape planning to mitigate deforestation impacts.

Information

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Foundation for Environmental Conservation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Acre (2010a) Plano estadual de prevenção e controle do desmatamento do Acre – PPCD/AC/Governo do Estado do Acre [www document]. URL https://imc.ac.gov.br/wp-content/uploads/2016/09/PPCD_ACRE-1.pdf Google Scholar
Acre (2010b) Recursos naturais: geologia, geomorfologia e solos do Acre. ZEE/AC, fase II, escala 1:250.000/Programa Estadual de Zoneamento Ecológico-Econômico do Acre [www document]. URL https://sema.ac.gov.br/zee-acre/ Google Scholar
Acre (2010c) Zoneamento Ecológico-Econômico do Estado do Acre, Fase II (Escala 1:250.000): Documento Síntese. 2. Ed [www document]. URL https://sema.ac.gov.br/zee-acre/ Google Scholar
Acre (2012) Plano Estadual de Recursos Hídricos do Acre (1st ed.) [www document]. URL https://imc.ac.gov.br/wp-content/uploads/2016/09/Plano_Estadual_Recursos_Hidricos.pdf Google Scholar
Adamy, A (2015) Avaliação preliminar dos efeitos da inundação em Brasiléia, Acre. Porto Velho, Brazil: Ministério de Minas e Energia.Google Scholar
Allouche, O, Tsoar, A, Kadmon, R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43: 12231232.10.1111/j.1365-2664.2006.01214.xCrossRefGoogle Scholar
Amaral, S, Costa, CB, Arasato, LS, Ximenes, AC, Rennó, CD (2013)AMBDATA: variáveis ambientais para Modelos de Distribuição de Espécies (MDEs). XVI Simpósio Brasileiro de Sensoriamento Remoto 1: 69306937.Google Scholar
Anderson, RP, Lew, D, Peterson, AT (2003) Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecological Modelling 162: 211232.10.1016/S0304-3800(02)00349-6CrossRefGoogle Scholar
Angelo, C (2019) Brazil’s government freezes nearly half of its science spending. Nature 568: 155156.10.1038/d41586-019-01079-9CrossRefGoogle ScholarPubMed
AntWeb (2021) AntWeb. Version 8.55.2 [www document]. URL https://www.antweb.org/ Google Scholar
Araújo, M, New, M (2007) Ensemble forecasting of species distributions. Trends in Ecology & Evolution 22: 4247.10.1016/j.tree.2006.09.010CrossRefGoogle Scholar
Arroyo-Rodríguez, V, Fahrig, L, Tabarelli, M, Watling, JI, Tischendorf, L, Benchimol, M et al. (2020) Designing optimal human-modified landscapes for forest biodiversity conservation. Ecology Letters 23: 14041420.10.1111/ele.13535CrossRefGoogle ScholarPubMed
Barbet-Massin, M, Jiguet, F, Albert, CH, Thuiller, W (2012) Selecting pseudoabsences for species distribution models: how, where and how many? Methods in Ecology and Evolution 3: 327338.10.1111/j.2041-210X.2011.00172.xCrossRefGoogle Scholar
Becker, BK (2010) Recuperação de áreas desflorestadas da Amazônia: será pertinente o cultivo da palma de óleo (Dendê)? Revista Franco Brasileira de Geografia 10: 10.Google Scholar
Bolton, B (2021) AntCat: An Online Catalog of the Ants of the World [www document]. URL https://antcat.org/ Google Scholar
Brejão, GL, Hoeinghaus, DJ, Roa-Fuentes, CA, Pérez-Mayorga, MA. Ferraz, SFB, Casatti, L (2021) Taxonomic and functional turnover of Amazonian stream fish assemblages is determined by deforestation history and environmental variables at multiple scales. Neotropical Ichthyology 19: e210042.10.1590/1982-0224-2021-0042CrossRefGoogle Scholar
Chamberlain, SA, Boettiger, C (2017) R Python, and Ruby clients for GBIF species occurrence data. PeerJ Preprints 5: e3304v1.10.7287/peerj.preprints.3304v1CrossRefGoogle Scholar
Del Toro, I, Ribbons, RR, Pelini, SL (2012) The little things that run the world revisited: a review of ant-mediated ecosystem services and disservices (Hymenoptera: Formicidae). Myrmecological News 17: 133146.Google Scholar
Diniz-Filho, JAF, Bini, LM, Rangel, TF, Loyola, RD, Hof, C, Nogués-Bravo, D, Araújo, MB (2009) Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32: 897906.10.1111/j.1600-0587.2009.06196.xCrossRefGoogle Scholar
Dormann, CF, Elith, J, Bacher, S, Buchmann, C, Carl, G, Carré, G et al. (2013). Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36: 2746.10.1111/j.1600-0587.2012.07348.xCrossRefGoogle Scholar
Duarte, AF (2011) As chuvas e as vazões na bacia hidrográfica do Rio Acre, Amazônia Ocidental: caracterização e implicações socioeconômicas e ambientais. Amazônia: Ciência & Desenvolvimento 6: 161183.Google Scholar
Duarte, AF, Gioda, A (2014) Inorganic composition of suspended sediments in the Acre River, Amazon Basin, Brazil. Latin American Journal of Sedimentology and Basin Analysis 21: 315.Google Scholar
Escalante, T, Linaje, M, Illoldi-Rangel, P, Rivas, M, Estrada, P, Neira, F, Morrone, JJ (2009) Ecological niche models and patterns of richness and endemism of the southern Andean genus Eurymetopum (Coleoptera, Cleridae). Revista Brasileira de Entomologia 53: 379385.10.1590/S0085-56262009000300011CrossRefGoogle Scholar
Escobar, H (2015) Fiscal crisis has Brazilian scientists scrambling. Science 349: 909910.Google ScholarPubMed
Fick, SE, Hijmans, RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37: 43024315.10.1002/joc.5086CrossRefGoogle Scholar
Filgueiras, BKC, Peres, CA, Melo, FPL, Leal, IR, Tabarelli, M (2021) Winner–loser species replacements in human-modified landscapes. Trends in Ecology & Evolution 36: 545555.10.1016/j.tree.2021.02.006CrossRefGoogle ScholarPubMed
GBIF (2021) GBIF Occurrence Download [www document]. URL https://doi.org/10.15468/dl.wjqcvf CrossRefGoogle Scholar
Grinnell, J (1924) Geography and evolution. Ecology 5: 225229.10.2307/1929447CrossRefGoogle Scholar
Groffman, PM, Cavender-Bares, J, Bettez, ND, Grove, JM, Hall, SJ, Heffernan, JB et al. (2014) Ecological homogenization of urban USA. Frontiers in Ecology and the Environment 12: 7481.10.1890/120374CrossRefGoogle Scholar
Hijmans, RJ, Van Etten, J, Summer, M, Cheng, J, Baston, D, Bevan, A et al. (2021) raster: Geographic Data Analysis and Modeling [www document]. URL https://cran.r-project.org/web/packages/raster/raster.pdf Google Scholar
Hortal, J, de Bello, F, Diniz-Filho, JAF, Lewinsohn, TM, Lobo, JM, Ladle, RJ (2015) Seven shortfalls that beset large-scale knowledge of biodiversity. Annual Review of Ecology, Evolution, and Systematics 46: 523549.10.1146/annurev-ecolsys-112414-054400CrossRefGoogle Scholar
INPE (2019) PRODES – Amazônia: Monitoramento do Desmatamento da Floresta Amazônica por Satélite [www document]. URL https://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodesGoogle Scholar
IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, TF, Qin, D, Plattner, G-K, Tignor, M, Allen, SK, Boschung, J et al. (eds). Cambridge, UK: Cambridge University Press, 1535 pp.Google Scholar
Koch, R, Almeida-Cortez, JS, Kleinschmit, B (2017) Revealing areas of high nature conservation importance in a seasonally dry tropical forest in Brazil: combination of modelled plant diversity hot spots and threat patterns. Journal for Nature Conservation 35: 2439.10.1016/j.jnc.2016.11.004CrossRefGoogle Scholar
Lasmar, CJ, Bishop, TR, Parr, CL, Queiroz, ACM, Schmidt, FA, Ribas, CR (2021) Geographical variation in ant foraging activity and resource use is driven by climate and net primary productivity. Journal of Biogeography 48: 14481459.10.1111/jbi.14089CrossRefGoogle Scholar
Latrubesse, EM, Silvia, SA, Moraes, MJ (2001) Floods in the city of Rio Branco, Brazil: a case study on the impacts of human activities on flood dynamics and effects. In: Marchetti, M, Rivas, V (eds), Geomorphology and Environmental Impact Assessment (pp. 163175). Tokyo, Japan: Balkema Publishers.Google Scholar
Leal, IR, Ribeiro-Neto, JD, Arnan, X, Oliveira, FMP, Arcoverde, GB, Feitosa, RM, Andersen, AN (2017) Ants of the caatinga: diversity, biogeography, and functional responses to anthropogenic disturbance and climate change. In: da Silva, JMC, Leal, IR, Tabarelli, M (eds), Caatinga: The Largest Tropical Dry Forest Region in South America (pp. 6595). Cham, Switzerland: Springer.10.1007/978-3-319-68339-3_3CrossRefGoogle Scholar
Lomolino, MV, Heaney, LR (2004) Frontiers of Biogeography: New Directions in the Geography of Nature. Sunderland, MA, USA: Sinauer Associates, Inc.Google Scholar
MapBiomas (2019) MapBiomas v. 5.0: Uso e Cobertura do Solo [www document]. URL https://plataforma.brasil.mapbiomas.org/ Google Scholar
Marmion, M, Parviainen, M, Luoto, M, Heikkinen, RK, Thuiller, W (2009) Evaluation of consensus methods in predictive species distribution modelling. Diversity and Distributions 15: 5969.10.1111/j.1472-4642.2008.00491.xCrossRefGoogle Scholar
Marques, EQ, Marimon-Junior, BH, Marimon, BS, Matricardi, EAT, Mews, HA, Colli, GR (2019) Redefining the Cerrado–Amazonia transition: implications for conservation. Biodiversity and Conservation 29: 15011517.10.1007/s10531-019-01720-zCrossRefGoogle Scholar
Martins, IS, Ortega, JCG, Guerra, V, Costa, MMS, Martello, F, Schmidt, FA (2022) Ant taxonomic and functional beta-diversity respond differently to changes in forest cover and spatial distance. Basic and Applied Ecology 60: 89102.10.1016/j.baae.2022.02.008CrossRefGoogle Scholar
McGeoch, MA (1998) The selection, testing and application of terrestrial insects as bioindicators. Biological Reviews 73: 181201.10.1017/S000632319700515XCrossRefGoogle Scholar
McKinney, ML, Lockwood, JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends in Ecology & Evolution 14: 450453.10.1016/S0169-5347(99)01679-1CrossRefGoogle ScholarPubMed
Milien, EJ, Rocha, KS, Brown, IF, Perz, SG (2021) Roads, deforestation and the mitigating effect of the Chico Mendes extractive reserve in the southwestern Amazon. Trees, Forests and People 3: 100056.10.1016/j.tfp.2020.100056CrossRefGoogle Scholar
Moraes, KF, Santos, MPD, Gonçalves, GSR, Oliveira, GL, Gomes, LB, Lima, MGM (2020) Climate change and bird extinctions in the Amazon. PLoS ONE 15: e0236103.10.1371/journal.pone.0236103CrossRefGoogle ScholarPubMed
Naimi, B, Araújo, MB (2016) sdm: a reproducible and extensible R platform for species distribution modelling. Ecography 39: 368375.10.1111/ecog.01881CrossRefGoogle Scholar
Naimi, B, Hamm, NAS, Groen, TA, Skidmore, AK, Toxopeus, AG (2014) Where is positional uncertainty a problem for species distribution modelling? Ecography 37: 191203.10.1111/j.1600-0587.2013.00205.xCrossRefGoogle Scholar
Newbold, T (2018) Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proceedings of the Royal Society B: Biological Sciences 285: 20180792.10.1098/rspb.2018.0792CrossRefGoogle ScholarPubMed
Nunes, CA, Berenguer, E, França, F, Ferreira, J, Lees, AC, Louzada, J et al. (2022) Liking land-use and land-cover transitions to their ecological impact in the Amazon. Proceedings of the National Academy of Sciences of the United States of America 119: e2202310119.Google Scholar
O’Hara, RB, Kotze, DJ (2010) Do not log-transform count data. Methods in Ecology and Evolution 1: 118122.10.1111/j.2041-210X.2010.00021.xCrossRefGoogle Scholar
Paolucci, LN, Schoereder, JH, Brando, PM, Andersen, AN (2017) Fire-induced forest transition to derived savannas: cascading effects on ant communities. Biological Conservation 214: 295302.10.1016/j.biocon.2017.08.020CrossRefGoogle Scholar
Peterson, AT, Sánchez-Cordero, V, Martínez-Meyer, E, Navarro-Sigüenza, AG (2006) Tracking population extirpations via melding ecological niche modeling with land-cover information. Ecological Modelling 195: 229236.10.1016/j.ecolmodel.2005.11.020CrossRefGoogle Scholar
Pressey, RL, Cabeza, M, Watts, ME, Cowling, RM, Wilson, KA (2007) Conservation planning in a changing world. Trends in Ecology & Evolution 22: 583592.10.1016/j.tree.2007.10.001CrossRefGoogle Scholar
Queiroz, ACM, Rabello, AM, Braga, DL, Santiago, GS, Zurlo, LF, Philpott, SM, Ribas, CR (2020) Cerrado vegetation types determine how land use impacts ant biodiversity. Biodiversity and Conservation 29: 20172034.10.1007/s10531-017-1379-8CrossRefGoogle Scholar
R Core Team (2019) v. 3.6.1: The R Project for Statistical Computing [www document]. URL https://www.r-project.org/ Google Scholar
Ribas, CR, Campos, RBF, Schmidt, FA, Solar, RRC (2012) Ants as indicators in Brazil: a review with suggestions to improve the use of ants in environmental monitoring programs. Psyche: A Journal of Entomology 2012: 123.Google Scholar
Sales, FMS, Schmidt, FA (2023) Nesting stratum and habitat affinity matter in ant assemblage response to forest-pasture shifting. EntomoBrasilis 16: 17.10.12741/ebrasilis.v16.e1024CrossRefGoogle Scholar
Sales, LP, Galetti, M, Pires, MM (2020) Climate and land-use change will lead to a faunal ‘savannization’ on tropical rainforests. Global Change Biology 26: 70367044.10.1111/gcb.15374CrossRefGoogle ScholarPubMed
Sánchez-Fernández, D, Abellán, P, Picazo, F, Millán, A, Ribera, I, Lobo, JM (2013) Do protected areas represent species’ optimal climatic conditions? A test using Iberian water beetles. Diversity and Distributions 19: 14071417.10.1111/ddi.12104CrossRefGoogle Scholar
Schmidt, FA, Costa, MMS, Martello, F, De Oliveira, AB, Menezes, AS, Fontenele, LK et al. (2020). Ant diversity studies in Acre: what we know and what we could do to know more? Boletim Do Museu Paraense Emílio Goeldi – Ciências Naturais 15: 113134.10.46357/bcnaturais.v15i1.235CrossRefGoogle Scholar
Schmidt, FA, Da Costa, MMS, Sales, FMS, Fontenele, LK (2023) Ant assemblages in human-modified landscape in southwestern Brazilian Amazon. In Dormann, DF, Batáry, P, Grass, I, Klein, AM, Loss, J, Scherber, C et al. (eds), Defining Agroecology? A Festschrift for Teja Tscharntke (pp. 4769). Hamburg, Germany: Tredition.Google Scholar
Schmidt, FA, Ribas, CR, Schoereder, JH (2013) How predictable is the response of ant assemblages to natural forest recovery? Implications for their use as bioindicators. Ecological Indicators 24: 158166.10.1016/j.ecolind.2012.05.031CrossRefGoogle Scholar
Singh, M, Sood, S, Collins, CM (2022) Fire dynamics of the Bolivian Amazon. MDPI: Land 11: 1436.Google Scholar
Soares-Filho, BS, Nepstad, DC, Curran, LM, Cerqueira, GC, Garcia, RA, Ramos, CA et al. (2006) Modelling conservation in the Amazon basin. Nature 440: 520523.10.1038/nature04389CrossRefGoogle ScholarPubMed
Souza, CM, Shimbo, JZ, Rosa, MR, Parente, LL, Alenca, AA, Rudorff, BFT et al. (2020) Reconstructing three decades of land use and land cover changes in Brazilian biomes with Landsat Archive and Earth Engine. MDPI: Remote Sensing 12: 2735.Google Scholar
Turner, II BL, Lambin, EF, Reenberg, A (2007) The emergence of land change science for global environmental change and sustainability. Proceedings of the National Academy of Sciences of the United States of America 104: 2066620671.10.1073/pnas.0704119104CrossRefGoogle ScholarPubMed
Underwood, EC, Fisher, BL (2006) The role of ants in conservation monitoring: if, when, and how. Biological Conservation 132: 166182.10.1016/j.biocon.2006.03.022CrossRefGoogle Scholar
Vasconcelos, HL, Maravalhas, JB, Feitosa, RM, Pacheco, R, Neves, KC, Andersen, AN (2018) Neotropical savanna ants show a reversed latitudinal gradient of species richness, with climatic drivers reflecting the forest origin of the fauna. Journal of Biogeography 45: 248258.10.1111/jbi.13113CrossRefGoogle Scholar
Willcock, S, Cooper, GS, Addy, J, Dearing, JA (2023) Earlier collapse of Anthropocene ecosystems driven by multiple faster and noisier drivers. Nature Sustainability 6: 13311342.10.1038/s41893-023-01157-xCrossRefGoogle Scholar
Zuur, AF, Ieno, EN, Walker, N, Saveliev, AA, Smith, GM (2009) Mixed Effects Models and Extensions in Ecology with R, 1st edition. New York, NY, USA: Springer.10.1007/978-0-387-87458-6CrossRefGoogle Scholar
Supplementary material: File

Sales et al. supplementary material

Sales et al. supplementary material
Download Sales et al. supplementary material(File)
File 30.3 KB