Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T09:15:08.106Z Has data issue: false hasContentIssue false

Solutions of Linear Rational Expectations Models

Published online by Cambridge University Press:  18 October 2010

L. Broze
Affiliation:
IRSIA et Centre d'Economie Mathématique et d'Econométrie de l'Université Libre de Bruxelles
C. Gourieroux
Affiliation:
Université de Lille et Cepremap
A. Szafarz
Affiliation:
Centre d'Economie Mathématique et d'Econométrie de l'Université Libre de Bruxelles

Abstract

Linear rational expectations models generally have a large number of solutions. It is thus important to describe them exhaustively in order to study their properties and subsequently estimate which solution best fits the data. In this paper, a global approach is suggested allowing a simultaneous treatment of all possible cases. The fundamental concepts are the revision processes appearing in the procedure of updating expectations. It isfound that the set of solutions is completely described by using a limitednumber of these processes. We show how the method may be applied to determine the set of stationary solutions admitting an infinite moving-average representation. We give a natural parametrization of this set and discuss the exact number of independent parameters.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Aoki, M. and Cansoneri, M.. Reduced forms of rational expectations models. Quarterly Journal of Economics 93 (1979): 5971.10.2307/1882598Google Scholar
2. Blanchard, O. J. Backward and forward solutions for economies with rational expectations. American Economic Review, Papers and Proceedings 69 (1979): 114118.Google Scholar
3. Broze, L., Janssen, J., and Szafarz, A.. On solutions of linear models with rational expectations. In Florens, J. P., Mouchart, M., Raoult, J. P., and Simar, L., (eds.), Alternative Approaches to Time Series Analysis (Proceedings of the 3rd Franco-Belgian Meeting of Statisticians, November 1982), pp. 210217. Brussels: Publications des Facultés Universitaires Saint-Louis, 1984.Google Scholar
4. Broze, L. and Szafarz, A.. On linear models with rational expectations which admit a unique solution. European Economic Review 24 (1984): 103111.10.1016/0014-2921(84)90015-1Google Scholar
5. Broze, L. and Szafarz, A.. Forme réduite d'un modèle général à anticipations rationnelles. Cahiers du CERO, to appear.Google Scholar
6. Chow, G. C. Econometrics. New York: McGraw-Hill, 1983.Google Scholar
7. Evans, G. and Honkapohja, S.. A complete characterization of ARMA solutions to linear rational expectations models. University of Helsinki, Working Paper 1984.Google Scholar
8. Gourieroux, C, Laffont, J. J., and Monfort, A., Modèles linéaires avec anticipations rationnelles: Solutions et critères de sélection. Cahiers du CNRS 23 (1981): 1546.Google Scholar
9. Gourieroux, C, Laffont, J. J., and Monfort, A.. Rational expectations in dynamic linear models: Analysis of the solutions. Econometrica 50 (1982): 409425.10.2307/1912635Google Scholar
10. MacCallum, B. T. Rational expectations and the estimation of econometric models: An alternative procedure. International Economic Review 17 (1976): 484490.10.2307/2525715Google Scholar
11. Muth, J. F. Rational expectations and the theory of price movements. Econometrica 29 (1961): 315n335.10.2307/1909635Google Scholar
12. Pesaran, M. H. Identification of rational expectations models. Journal of Econometrics 16 (1981): 375398.10.1016/0304-4076(81)90036-1Google Scholar
13. Sargan, J. D. Alternative models for rational expectationsin some simple irregular cases. Discussion Paper, London School of Economics, 1984.Google Scholar
14. Shilier, R. Rational expectations and the dynamic structure of macroeconomic models. Journal of Monetary Economics 4 (1978): 144.10.1016/0304-3932(78)90032-6Google Scholar
15. Taylor, J. Conditions for unique solution in stochastic macroeconomic models with rational expectations. Econometrica 45 (1977): 13771387.10.2307/1912306Google Scholar
16. Visco, I. On the derivation of reduced forms of rational expectations models. European Economic Review 16 (1981): 355365.10.1016/0014-2921(81)90008-8Google Scholar
17. Wallis, K. F. Econometric implications of the rational expectations hypothesis. Econometrica 48 (1980): 4973.10.2307/1912018Google Scholar
18. Wegge, L. Identifiability of structural models containing Muthrational current and future expectations. University of California Working Paper 233, 1984.Google Scholar