Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T22:42:07.374Z Has data issue: false hasContentIssue false

XV.—The Periostracum of Mytilus edulis*

Published online by Cambridge University Press:  06 July 2012

J. F. Dunachie
Affiliation:
Department of Applied Microbiology and Biology, The Royal College of Science and Technology, Glasgow.

Synopsis

A Histological investigation has been made of growth and repair of periostracum in Mytilus edulis. Physical rather than chemical differences in the processes of secretion can account for the variations in the structure of periostracum which appear during normal growth and in that which follows damage. Amœbocytes take part in the production of periostracum by supplying material for the secretory cells. Reasons for the presence of other granular cells near the site of secretion are also suggested. The periostracum is secreted solely by the epithelium of the inner surface of the outer mantle fold, although initially it adheres to the epithelium of a process of the middle fold. Consideration of the nature of the connection of the periostracum with its retractor muscles leads to the hypothesis that the cells of both epithelia move with the periostracum towards the mantle edge. The tissue where the two epithelia meet appears to be meristematic.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1963

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References to Literature

Adams, C. W. M., and Sloper, J. C., 1956. “Demonstration of Cystine and Cysteine by Performic Acid/Alcian Blue”, J. Endocrin., 13, 221227.CrossRefGoogle Scholar
Atkins, D., 1938. “On the Ciliary Mechanisms and Interrelations of Lamellibranchs, Part IV”, Quart. J. Micr. Sci., 79, 423444.Google Scholar
Beedham, G. E., 1958 a. “Observations on the Mantle of the Lamellibranchia”, Quart. J. Micr. Sci., 99, 181198.Google Scholar
Beedham, G. E., 19586. “Observations on the Non-calcareous Component of the Shell in the Lamellibranchia”, Quart. J. Micr. Sci., 99, 341358.Google Scholar
Brown, C. H., 1950 a. “Quinone Tanning in the Animal Kingdom”, Nature, Lond., 165, 275.CrossRefGoogle ScholarPubMed
Brown, C. H., 1950 b. “A review of the Methods Available for the Determination of the Types of Forces Stabilizing Structural Proteins in Animals”, Quart. J. Micr. Sci., 91, 331339.Google Scholar
Brown, C. H., 1952. “Some Structural Proteins in Mytilus edulis”, Quart. J. Micr. Sci., 93, 487502.Google Scholar
Bruyne C., De, 1896. “Contribution à l'étude de la phagocytose”, Arch. Biol., Paris, 14, 161241.Google Scholar
Coe, W. R., and Fox, D., 1942. “Biology of the Californian Sea-mussel (Mytilus edulis californianus). I. Influence of Temperature, Food Supply, Sex and Age on the Rate of Growth”, J. Exp. Zool., 90, 130.Google Scholar
Dische, Z., 1955. “New Color Reactions for the Determination of Sugars in Polysaccharides”, Meth. Biochem. Analysis, 2, 313358.CrossRefGoogle ScholarPubMed
Ehrenbaum, E., 1884. “Untersuchungen über die Structur und Bildung der Schale der in der Kieler Bucht häufig vorkommenden Muscheln”, Z. Wiss. Zool., 41, 147.Google Scholar
Field, I. A., 1922. “The Biology and Economic Value of the Sea-mussel, Mytilus edulis”, Bull. U.S. Bur. Fish., 38, 1257.Google Scholar
Goodrich, E. S., 1919. “The Pseudopodia of the Leucocytes of Invertebrates”, Quart. J. Micr. Set., 64, 1926.Google Scholar
Haas, F., 1935. Bivalvia. In Bronn: Klassen und Ordnungen des Tierreiches, Bd. 3, Mollusca/Abt. 3.Google Scholar
Hale, A. J., 1953. “Observations on Substances that React Weakly to the PAS Technique”, Quart. J. Micr. Sci., 94, 303314.Google Scholar
Hale, C. W., 1946. “Histochemical Demonstration of Acid Polysaccharides in Animal Tissues”, Nature, Lond., 157, 802.Google Scholar
Hotchkiss, R. D., 1948. “A Microchemical Reaction Resulting in the Staining of Polysaccharide Structures in Fixed Tissue Preparations”, Arch. Biochem., 16, 131141.Google ScholarPubMed
Kawaguti, S. and Ikemoto, N., 1962 a. “Electron Microscopy on the Mantle of the Bivalved Gastropod”, Biol. J. Okayama Univ., 8, 120.Google Scholar
Kawaguti, S. and Ikemoto, N., 1962 b. “Electron Microscopy on the Mantle of a Bivalve, Fabulina nitidula,” Biol. J. Okayama Univ., 8, 2130.Google Scholar
Kessel, E., 1940. “Über den feineren Bau des Mytiliden Periostracum erschlossen aus der Optik”, Z. Morph. Ökol. Tiere, 36, 581594.Google Scholar
Kessel, E., 1944. “Über Periostracum-Bildung”, Z. Morph. Ökol. Tiere, 40, 348360.CrossRefGoogle Scholar
Kollmann, M., 1908. “Recherches sur les leucocytes et le tissu lymphoid des Invertébrés”, Ann. Sci. Nat. Zool., 8, 1240.Google Scholar
Liebman, E., 1946. “On Trephocytes and Trephocytosis; a Study on the Role of Leucocytes in Nutrition and Growth”, Growth, 10, 291329.Google Scholar
Linder, J. E., 1949. “A Simple Method of Staining the Basement Membrane of Glomerular Capillaries”, Quart. J. Micr. Sci., 90, 427430.Google Scholar
Lison, L., 1954. “Alcian Blue 8G with Chlorantine Fast Red 5B; a Technic for Selective Staining of Mucopolysaccharides”, Stain Tech., 29, 131138.Google Scholar
List, T., 1902. “Die Mytiliden des Golfes von Neapel und der angrenzenden Meeres-abschnitte”, Fauna u. Flora Neapel, 27, 1312.Google Scholar
Mazia, D., Brewer, P. A., and Alfert, M., 1953. “The Cytochemical Staining and Measurement of Protein with Mercuric Bromophenol Blue”, Biol. Bull. Wood's Hole, 104, 5767.Google Scholar
Michaelis, J., 1947. “Nature of the Interaction of Nucleic Acids and Nuclei with Basic Dyestuffs”, Cold Spr. Harb. Symp. Quant. Biol., 12, 131142.Google Scholar
Owen, G., 1955. “Use of Propylene Phenoxytol as a Relaxing Agent”, Nature, Lond., 175, 434.Google Scholar
Owen, G., 1959. “A New Method for Staining Connective Tissue Fibres, with a Note on Liang's Method for Nerve Fibres”, Quart. J. Micr. Sci., 100, 421425.Google Scholar
Pearse, A. G. E., 1953. Histochemistry, Theoretical and Applied. London.Google Scholar
Smyth, J. D., 1954. “A Technique for the Histochemical Demonstration of Polyphenol Oxidase and its Application to Egg-shell Formation in Helminths and Byssus Formation in Mytilus”, Quart. J. Micr. Sci., 95, 139152.Google Scholar
Steedman, H. F., 1947. “Ester Wax: a New Embedding Medium”, Quart. J. Micr. Sci., 88, 123133.Google Scholar
Steedman, H. F., 1950. “Alcian Blue 8GS—a New Stain for Mucin”, Quart. J. Micr. Sci., 91, 477479.Google ScholarPubMed
Takatsuki, S., 1934. “On the Nature and Function of the Amoebocytes in Ostrea edulis”, Quart. J. Micr. Sci., 76, 379431.Google Scholar
Vialli, M., 1951. “Osservazioni sull' uso dell' Alcian Blue 8GS nello studio dei mucopolisaccaridi”, Boll. Soc. Ital. Biol. Sper., 27, 597598.Google Scholar
Wagge, L. E., 1951. “The Activity of Amœbocytes and of Alkaline Phosphatase during the Regeneration of the Shell in the Snail, Helix aspersa”, Quart. J. Micr. Sci., 92, 307321.Google Scholar
White, K. M., 1937. Mytilus, L.M.B.C. Mem., 31.Google Scholar
Yonge, C. M., 1926. “Structure and Physiology of the Organs of Feeding in Ostrea edulis”, J. Mar. Biol. Ass. U.K., 14, 295386.Google Scholar
Yonge, C. M., 1928. “The Absorption of Glucose by Ostrea edulis”, J. Mar. Biol. Ass. U.K., 15, 643653.CrossRefGoogle Scholar
Yonge, C. M., 1957. “Mantle Fusion in the Lamellibranchia”, Pubbl. Staz. Zool. Napoli, 29, 151171.Google Scholar