Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T06:16:01.188Z Has data issue: false hasContentIssue false

Petrogenesis of slab-derived trondhjemite–tonalite–dacite/adakite magmas

Published online by Cambridge University Press:  03 November 2011

M. S. Drummond
Affiliation:
Mark S. Drummond, Department of Geology, University of Alabama at Birmingham, Birmingham, AL 35294-2160, U.S.A.
M. J. Defant
Affiliation:
Marc J. Defant, Department of Geology, University of South Florida, Tampa, FL 33620-5200, U.S.A.
P. K. Kepezhinskas
Affiliation:
Pavel K. Kepezhinskas, Department of Geology.University of South Florida, Tampa, FL 33620-5200, U.S.A.
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The prospect of partial melting of the subducted oceanic crust to produce arc magmatism has been debated for over 30 years. Debate has centred on the physical conditions of slab melting and the lack of a definitive, unambiguous geochemical signature and petrogenetic process. Experimental partial melting data for basalt over a wide range of pressures (1–32 kbar) and temperatures (700–1150°C) have shown that melt compositions are primarily trondhjemite–tonalite–dacite (TTD). High-Al (> 15% Al2O3 at the 70% SiO2 level) TTD melts are produced by high-pressure (≥ 5 kbar) partial melting of basalt, leaving a restite assemblage of garnet + clinopyroxene ± hornblende. A specific Cenozoic high-Al TTD (adakite) contains lower Y, Yb and Sc and higher Sr, Sr/Y, La/Yb and.Zr/Sm relative to other TTD types and is interpreted to represent a slab melt under garnet amphibolite to eclogite conditions. High-Al TTD with an adakite-like geochemical character is prevalent in the Archean as the result of a higher geotherm that facilitated slab melting. Cenozoic adakite localities are commonly associated with the subduction of young (<25 Ma), hot oceanic crust, which may provide a slab geotherm (≍9–10°C km−1) conducive for slab dehydration melting. Viable alternative or supporting tectonic effects that may enhance slab melting include highly oblique convergence and resultant high shear stresses and incipient subduction into a pristine hot mantle wedge. The minimum P–T conditions for slab melting are interpreted to be 22–26 kbar (75–85 km depth) and 750–800°C. This P–T regime is framed by the hornblende dehydration, 10°C/km, and wet basalt melting curves and coincides with numerous potential slab dehydration reactions, such as tremolite, biotite + quartz, serpentine, talc, Mg-chloritoid, paragonite, clinohumite and talc + phengite. Involvement of overthickened (>50 km) lower continental crust either via direct partial melting or as a contaminant in typical mantle wedge-derived arc magmas has been presented as an alternative to slab melting. However, the intermediate to felsic volcanic and plutonic rocks that involve the lower crust are more highly potassic, enriched in large ion lithophile elements and elevated in Sr isotopic values relative to Cenozoic adakites. Slab-derived adakites, on the other hand, ascend into and react with the mantle wedge and become progressively enriched in MgO, Cr and Ni while retaining their slab melt geochemical signature. Our studies in northern Kamchatka, Russia provide an excellent case example for adakite-mantle interaction and a rare glimpse of trapped slab melt veinlets in Na-metasomatised mantle xenoliths.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1996

References

Abbott, D. H.&Hoffman, S. E. 1984. Archaean plate tectonics revisited 1. Heat flow, spreading rate, and the age of subducting oceanic lithosphere and their effects on the origin and evolution of continents. TECTONICS 3, 429–48.CrossRefGoogle Scholar
Arculus, R. J.&Powell, R. 1986. Source component mixing in the regions of arc magma generation. J GEOPHYS RES 91, 5913–26.CrossRefGoogle Scholar
Armstrong, R. L. 1981. Radiogenic isotopes: the case for crustal recycling on a near-steady-state no-continental-growth Earth. PHIL TRANS R SOC LONDON A301, 443–72.Google Scholar
Arth, J. G. 1979. Some trace elements in trondhjemites—their implications to magma genesis and paleotectonic setting. In Barker, F. (ed.) Trondhjemites, dacites, and related rocks, 123132. New York: Elsevier.CrossRefGoogle Scholar
Atherton, M. P.&Petford, N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. NATURE 362, 144–6.CrossRefGoogle Scholar
Atherton, M. P.&Sanderson, L. M. 1987. The Cordillera Blanca Batholith: a study of granite intrusion and the relation of crustal thickening to peraluminosity. GEOL RUNDSCH 76, 213–32.CrossRefGoogle Scholar
Barker, F. 1979. Trondhjemite: definition, environment and hypotheses or origin. In Barker, F. (ed.) Trondhjemites, dacites, and related rocks, 112. New York: Elsevier.Google Scholar
Barker, F., Arth, J. G., Peterman, Z. E.&Friedman, I. 1976. The 1.7-to 1.8-b.y.-old trondhjemites of southwestern Colorado and northern New Mexico. GEOL SOC AM BULL 87, 189–98.2.0.CO;2>CrossRefGoogle Scholar
Beard, J. S. 1995. Experimental, geological, and geochemical constraints on the origins of low-K silicic magmas in oceanic arcs. J GEOPHYS RES 100, 15 593600.Google Scholar
Beard, J. S.&Lofgren, G. E. 1991. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb. J PETROL 32, 365401.CrossRefGoogle Scholar
Beard, J. S., Bergantz, G. W., Defant, M. J.&Drummond, M. S. 1993. Origin and emplacement of low-K silicic magmas in subduction setting: Penrose Conference Report. GSA TODAY 3, 38.Google Scholar
Bird, P., Toksov, M. N.&Sleep, N. H. 1975. Thermal and mechanical models of continent–continent convergence zones. J GEOPHYS RES 80, 4405–16.CrossRefGoogle Scholar
Bowring, S. A., Housh, T. B.&Isachsen, C. E. 1990. The Acasta gneisses: remnant of earth's early crust. In Newsom, H. E.&Jones, J. H. (ed.) Origin of the earth, 319–43. New York: Oxford.CrossRefGoogle Scholar
Cande, S. C,LaBreque, J. L..Larson, R. L., Pitman, W.C., Golovchenko, X.&Haxby, W. F. 1989. Magnetic lineations of the world's ocean basins. Tulsa: American Association of Petroleum Geologists.Google Scholar
Carroll, M. R.&Wyllie, P. J. 1989. Experimental phase relations in the system tonalite–peridotite–H2O at 15 kb; implications for assimilation and differentiation processes near the crust–mantle boundary. J PETROL 30, 1351–82.CrossRefGoogle Scholar
Cloos, M. 1993. Lithospheric buoyancy and collisional orogenesis: subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts. GEOL SOC AM BULL 105, 715–37.2.3.CO;2>CrossRefGoogle Scholar
Condie, K. C. 1981. Archean greenstone belts. New York: Elsevier.Google Scholar
Davidson, J. P., McMillan, N. J., Moorbath, S., Worner, G., Harmon, R. S.&Lopez-Escobar, L. 1990. The Nevados de Payachata volcanic region (18°S/69°W, N. Chile) II. Evidence for widespread crustal involvement in Andean magmatism. CONTRIB MINERAL PETROL 105, 412–32.CrossRefGoogle Scholar
Defant, M. J.&Drummond, M. S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. NATURE 347, 662–5.CrossRefGoogle Scholar
Defant, M. J.&Drummond, M. S. 1993. Mount St. Helens: potential example of the partial melting of the subducted lithosphere in a volcanic arc. GEOLOGY 21, 547–50.2.3.CO;2>CrossRefGoogle Scholar
Defant, M. J., Jackson, T. E., Drummond, M. S., de Boer, J. Z., Bellon, H., Feigenson, M. D., Maury, R. C.&Stewart, R. H. 1992. The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: an overview. J GEOL SOC LONDON 149, 569–79.CrossRefGoogle Scholar
de Silva, S. L., Davidson, J. P., Croudace, I. W.&Escobar, A. 1993. Volcanological and petrological evolution of Volcan Tata Sabaya, SW Bolivia. J VOLCANOL GEOTHERM RES 55, 305–35.CrossRefGoogle Scholar
Dewey, J. F.&Windley, B. F. 1981. Growth and differentiation of the continental crust. PHIL TRANS R SOC LONDON A301, 189206.Google Scholar
Droop, G. T. R., Lombardo, B.&Pognante, U. 1990. Formation and distribution of eclogite facies rocks in the Alps. In Carswell, D. A. (ed.) Ecologite facies rocks, 225–59. New York: Chapman & Hall.CrossRefGoogle Scholar
Drummond, M. S.&Defant, M. J. 1990. A model for trondhjemite–tonalite–dacite genesis and crustal growth via slab melting: Archean to modern comparisons. J GEOPHYS RES 95, 21 503521.Google Scholar
Drummond, M. S., Bordelon, M., de Boer, J. Z., Defant, M. J., Bellon, H.&Feigenson, M. D. 1995. Igneous petrogenesis and tectonic setting of plutonic and volcanic rocks of the Cordillera de Talamanca, Costa Rica—Panama, Central American arc. AM J SCI 295, 875919.CrossRefGoogle Scholar
Ellam, R. M.&Hawkesworth, C. J. 1988. Elemental and isotopic variations in subduction related basalts: evidence for a three component model. CONTRIB MINERAL PETROL 98, 7280.Google Scholar
Engi, M.&Lindsley, D. H. 1980. Stability of titanium clinohumite: experiments and thermodynamic analyses. CONTRIB MINERAL PETROL 72, 415–24.CrossRefGoogle Scholar
Feeley, T. C.&Davidson, J. P. 1994. Petrology of calc-alkaline lavas at Volcan Ollague and the origin of compositional diversity at central Andean stratovolcanoes. J PETROL 35, 1295–340.CrossRefGoogle Scholar
Feeley, T. C.&Hacker, M. D. 1995. Intracrustal derivation of Na-rich andesitic and dacitic magmas: an example from Volcan Ollague, Andean Central Volcanic zone. J GEOL 103, 213–25.CrossRefGoogle Scholar
Frey, F. A., Green, D. H.&Roy, S. 1978. Integrated models of basalt petrogenesis: a study of quartz tholeiites to olivine melilites from southeastern Australia utilizing geochemical and experimental petrologic data. J PETROL 19, 463513.CrossRefGoogle Scholar
Gill, J. B. 1981. Orogenic andesites and plate tectonics. New York: Springer-Verlag.CrossRefGoogle Scholar
Green, T. H. 1982. Anatexis of mafic crust and high pressure crystallization of andesite. In Thorpe, R. S. (ed.) Andesites—orogenic andesites and related rocks, 465–87. New York: Wiley.Google Scholar
Green, T. H.&Ringwood, A. E. 1968. Genesis of the calc-alkaline igneous rock suite. CONTRIB MINERAL PETROL 18, 105–62.Google Scholar
Hacker, B. R. 1990. Amphibolite-facies-to-granulite-facies reactions in experimentally deformed, unpowdered amphibolite. AM MINERAL 75, 1349–61.Google Scholar
Harmon, R. S., Barreiro, B. A., Moorbath, S., Hoefs, J., Francis, P. W., Thorpe, R. S., Deruelle, B., McHugh, J.&Viglino, J. A. 1984. Regional O-, Sr-, and Pb-isotope relationships in late Cenozoic calc-alkaline lavas of the Andean Cordillera. J GEOL SOC LONDON 141, 803–22.CrossRefGoogle Scholar
Helz, R. T. 1976. Phase relations of basalts in their melting ranges at = 5kb. Part II. Melt composition. J PETROL 17, 139–93.Google Scholar
Hochstaedter, A. G., Kepezhinskas, P. K., Defant, M. J., Drummond, M. S.&Bellon, H. 1994. On the tectonic significance of arc volcanism in northern Kamchatka. J GEOL 102, 639–54.CrossRefGoogle Scholar
Hole, M. J., Saunders, A. D., Marriner, G. F.&Tarney, J. 1984. Subduction of pelagic sediments: implications for the origin of Ce-anomalous basalts from the Mariana Islands. J GEOL SOC LONDON 141, 453–72.CrossRefGoogle Scholar
Holland, T. J. B. 1979. Experimental determination of the reaction paragonite = jadeite + kyanite + H2O, and internally consistent thermodynamic data for part of the system Na2O–Al2O3–SiO2–H2O, with applications to eclogites and blueschists. CONTRIB MINERAL PETROL 68, 293301.CrossRefGoogle Scholar
Holloway, J. R.&Burnham, C. W. 1972. Melting relations of basalt with equilibrium water pressure less than total pressure. J PETROL 13, 129.CrossRefGoogle Scholar
Ishizaka, K.&Carlson, R. W. 1983. Nd–Sr systematics of the Setouchi volcanic belt, southwest Japan: a clue to the origin of orogenic andesite. EARTH PLANET SCI LETT 64, 327–40.CrossRefGoogle Scholar
Jahn, B. M., Glikson, A. Y., Peucat, J. J.&Hickman, A. H. 1981. REE geochemistry and isotopic data of Archean silicic volcanics and granitoids from the Pilbara Block, Western Australia: implications for the early crustal evolution. GEOCHIM COSMOCHIM ACTA 45, 1633–52.CrossRefGoogle Scholar
Jahn, B. M., Vidal, P.&Kroner, A. 1984. Multi-chronometric ages and origin of Archean tonalitic gneisses in Finnish Lapland: a case for long crustal residence time. CONTRIB MINERAL PETROL 86, 398408.CrossRefGoogle Scholar
Johnston, A. D.&Wyllie, P. J. 1989. The system tonalite–peridotite–H2O at 30 kbar with applications to hybridization in subduction zone magmatism. CONTRIB MINERAL PETROL 102, 257–64.CrossRefGoogle Scholar
Kay, R. W. 1978. Aleutian magnesian andesites: melts from subducted Pacific ocean crust. J VOLCANOL GEOTHERM RES 4, 117–32.CrossRefGoogle Scholar
Kay, R. W.&Kay, S. M. 1991. Creation and destruction of lower continental crust. GEOL RUNDSCH 80, 259–78.CrossRefGoogle Scholar
Kay, R. W.&Kay, S. M. 1993. Delamination and delamination magmatism. TECTONOPHYSICS 219, 177–89.CrossRefGoogle Scholar
Kay, S. M., Mpodozis, C., Ramos, V. A.&Munizaga, F. 1991. Magma source variations for mid–late Tertiary magmatic rocks associated with a shallowing subduction zone and a thickening crust in the central Andes (28° to 33°S). GEOL SOC AM SPEC PAP 265, 113–38.Google Scholar
Kay, S. M., Ramos, V. A.&Marquez, M. 1993. Evidence in Cerro Pampa volcanic rocks for slab melting prior to ridge–trench collision in southern South America. J GEOL 101, 703–14.Google Scholar
Kelemen, P. B. 1995. Genesis of high Mg# andesites and the continental crust. CONTRIB MINERAL PETROL 120, 119.CrossRefGoogle Scholar
Kepezhinskas, P. K. 1989. Origin of the hornblende andesites of northern Kamchatka. INT GEOL REV 26, 246–52.CrossRefGoogle Scholar
Kepezhinskas, P. K., Defant, M. J.&Drummond, M. S. 1995. Na metasomatism in the island arc mantle by slab melt–peridotite interaction: evidence from mantle xenoliths in the north Kamchatka arc. J PETROL 36, 1505–27.Google Scholar
Kepezhinskas, P. K., Defant, M. J.&Drummond, M. S. 1996. Progressive enrichment of island arc mantle by melt–peridotite interaction inferred from Kamchatka xenoliths. GEOCHIM COSMOCHIM ACTA 60, 1217–29.CrossRefGoogle Scholar
Kepezhinskas, P. K., McDermott, F., Defant, M. J., Hochstaedter, A., Drummond, M. S., Hawkesworth, C., Koloskov, A., Maury, R. C.&Bellon, H. Trace element and Sr–Nd–Pb isotope geochemistry of the Kamchatka volcanic arc, Russia. GEOCHIM COSMOCHIM ACTA, in press.Google Scholar
Kushiro, I. 1990. Partial melting of mantle wedge and evolution of island arc crust. J GEOPHYS RES 95, 15 929–39.Google Scholar
Luais, B.&Hawkesworth, C. J. 1994. The generation of continental crust: an integrated study of crust-forming processes in the Archaean of Zimbabwe. J PETROL 35, 4393.CrossRefGoogle Scholar
Marsh, B. D.&Carmichael, I. S. E. 1974. Benioff zone magmatism. J GEOPHYS RES 79, 1196–206.Google Scholar
Martin, H. 1986. Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. GEOLOGY 14, 753–56.2.0.CO;2>CrossRefGoogle Scholar
Martin, H. 1987. Petrogenesis of Archaean trondhjemites, tonalites, and granodiorites from eastern Finland: major and trace element geochemistry. J PETROL 28, 921–53.CrossRefGoogle Scholar
Martin, H. 1993. The mechanisms of petrogenesis of the Archaean continental crust—comparison with modern processes. LITHOS 30, 373–88.Google Scholar
Massone, H. J.&Schreyer, W. 1987. Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz. CONTRIB MINERAL PETROL 96, 212–24.CrossRefGoogle Scholar
McLennan, S. M.&Taylor, S. R. 1982. Geochemical constraints on the growth of the continental crust. J GEOL 90, 347–61.CrossRefGoogle Scholar
Meijer, A. 1983. The origin of low-K rhyolites from the Mariana frontal arc. CONTRIB MINERAL PETROL 83, 4551.CrossRefGoogle Scholar
Morris, P. A. 1995. Slab melting as an explanation of Quaternary volcanism and aseismicity in southwest Japan. GEOLOGY 23, 395–8.2.3.CO;2>CrossRefGoogle Scholar
Mysen, B. O. 1982. The role of mantle anatexis. In Thorpe, R. S. (ed.) Andesites–orogenic andesites and related rocks; 489522. New York: Wiley.Google Scholar
Nelson, E. P.&Forsythe, R. D. 1989. Ridge collision at convergent margins: implications for Archean and post-Archean crustal growth. TECTONOPHYSICS 161, 307–15.Google Scholar
Nisbet, E. G. 1987. The young earth. Boston: Allen and Unwin.CrossRefGoogle Scholar
Obata, M.&Thompson, A. B. 1981. Amphibole and chlorite in mafic and ultramafic rocks in the lower crust and upper mantle. CONTRIB MINERAL PETROL 77, 7481.CrossRefGoogle Scholar
Parsons, B. A.&Sclater, J. G. 1977. An analysis of the variation of ocean floor bathymetry and heat flow with ages. J GEOPHYS RES 82, 803–27.Google Scholar
Peacock, S. M. 1990a. Fluid processes in subduction zones. SCIENCE 248, 329–37.CrossRefGoogle ScholarPubMed
Peacock, S. M. 1990b. Numerical simulation of metamorphic pressure–temperature–time paths and fluid production in subducting slabs. TECTONICS 9, 1197–211.Google Scholar
Peacock, S. M., Rushmer, T.&Thompson, A. B. 1994. Partial melting of subducting oceanic crust. EARTH PLANET SCI LETT 121, 227–44.CrossRefGoogle Scholar
Pearce, J. A.&Peate, D. W. 1995. Tectonic implications of the composition of volcanic arc magmas. In Wetherill, G. W., Albee, A. L.&Burke, K. C. (eds) ANNU REV EARTH PLANET SCI 251–85.Google Scholar
Pearce, J. A., van der Laan, S. R., Arculus, R. J., Murton, B. J.&Ishii, T. 1992. Boninite and harzburgite from ODP Leg 125 (Bonin–Mariana forearc): a case study of magma genesis during the initial stages of subduction. In Fryer, P., Pearce, J. A.&Stokking, L. B. (eds) Proceedings ODP Scientific Results, Leg 125, 623–59.Google Scholar
Philippot, P. 1993. Fluid–melt–rock interaction in mafic ecologites and coesite-bearing metasediments: constraints on volatile recycling during subduction. CHEM GEOL 108, 93112.Google Scholar
Philippot, P.&Selverstone, J. 1991. Trace-element-rich brines in eclogitic veins: implications for fluid composition and transport during subduction. CONTRIB MINERAL PETROL 106, 417–30.CrossRefGoogle Scholar
Poli, S. 1993. The amphibolite–eclogite transformation: an experimental study on basalt. AM J SCI 293, 1061–107.CrossRefGoogle Scholar
Puga, E., Diaz de Federico, A.&Demant, A. 1995. The eclogitized pillows of the Betic Ophiolitic Association: relics of the Tethys Ocean floor incorporated in the Alpine chain after subduction. TERRA REV 7, 3143.Google Scholar
Raheim, A.&Green, D. H. 1975. P, T paths of natural eclogites during metamorphism—a record of subduction. LITHOS 8, 317–28.CrossRefGoogle Scholar
Rapp, R. P. 1990. Vapor-absent partial melting of amphibolite/eclogite at 8–32 kbar: implications for the origin and growth of the continental crust, Troy. Unpublished Ph.D. Thesis, Rensselaer Polytechnic Institute.Google Scholar
Rapp, R. P. 1995. Amphibole-out phase boundary in partially melted metabasalt, its control over liquid fraction and composition, and source permeability. J GEOPHYS RES 100, 15 601–18.Google Scholar
Rapp, R. P.&Watson, E. B. 1995. Dehydration melting of metabasalt at 8–32 kbar. Implications for continental growth and crust–mantle recycling. J PETROL 36, 891931.CrossRefGoogle Scholar
Rapp, R. P., Watson, E. B.&Miller, C. F. 1991. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. PRECAMBRIAN RES 51, 125.CrossRefGoogle Scholar
Reymer, A.&Schubert, G. 1984. Phanerozoic addition rates to the continental crust and crustal growth. TECTONICS 3, 6377.Google Scholar
Ringwood, A. E. 1975. Composition and petrology of the earth's mantle. New York: McGraw-Hill.Google Scholar
Rushmer, T. 1991. Partial melting of two amphibolites: contrasting experimental results under fluid-absent conditions. CONTRIB MINERAL PETROL 107, 4159.Google Scholar
Rushmer, T., Pearce, J. A., Ottolini, L.&Bottazzi, P. 1994. Trace element behavior during slab melting: experimental evidence. EOS, TRANS AM GEOPHYS UNION 75, 746.Google Scholar
Sajona, F. Z., Maury, R. C., Bellon, H., Cotten, J., Defant, M. J.&Pubellier, M. 1993. Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines. GEOLOGY 21, 1007–10.Google Scholar
Saunders, A. D., Rogers, G., Marriner, G. F., Terrell, D. J.&Verma, S. P. 1987. Geochemistry of Cenozoic volcanic rocks, Baja California, Mexico: implications for the petrogenesis of postsubduction magmas. J VOLCANOL GEOTHERM RES 32, 223–45.CrossRefGoogle Scholar
Schreyer, W. 1988. Experimental studies on metamorphism of crustal rocks under mantle pressures. MINERAL MAG 52, 126.CrossRefGoogle Scholar
Selverstone, J., Franz, G., Thomas, S.&Getty, S. 1992. Fluid variability in 2 GPa eclogites as an indicator of fluid behavior during subduction. CONTRIB MINERAL PETROL 112, 341–57.Google Scholar
Sen, C.&Dunn, T. 1994. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites. CONTRIB MINERAL PETROL 117, 394409.Google Scholar
Sen, C.&Dunn, T. 1995. Experimental modal metasomatism of a spinel lherzolite and the production of amphibole-bearing peridotite. CONTRIB MINERAL PETROL 119, 422–32.CrossRefGoogle Scholar
Sørensen, S. S. 1988. Petrology of amphibolite-facies mafic and ultramafic rocks from the Catalina Schist, southern California: metasomatism and migmatization in a subduction zone metamorphic setting. J METAMORPHIC GEOL 6, 405–35.Google Scholar
Sørensen, S. S.&Grossman, J. N. 1989. Enrichment of trace elements in garnet amphibolites from a paleo-subduction zone: Catalina Schist, southern California. GEOCHIM COSMOCHIM ACTA 53, 3155–77.Google Scholar
Spulber, S. D.&Rutherford, M. J. 1983. The origin of rhyolite and plagiogranite in oceanic crust: an experimental study. J PETROL 24, 125.CrossRefGoogle Scholar
Stern, C. R., Futa, K.&Muehlenbachs, K. 1984. Isotope and trace element data for orogenic andesites from the Austral Andes. In Harmon, R. S.&Barriero, B. A. (eds) Andean magmatism–chemical and isotopic constraints. 3146. Cheshire: Shiva.CrossRefGoogle Scholar
Tatsumi, Y.&Eggins, S. 1995. Subduction zone magmatism. Oxford: Blackwell.Google Scholar
Tatsumi, Y.&Ishizaka, K. 1982. Origin of high-magnesian andesites in the Setouchi volcanic belt, southwest Japan I. Petrographic and chemical characteristics. EARTH PLANET SCI LETT 60, 293304.Google Scholar
Tatsumi, Y.&Nakamura, N. 1986. Composition of aqueous fluid from serpentine in the subducted lithosphere. GEOL J 20, 191–96.Google Scholar
Tatsumi, Y., Hamilton, D. L.&Nesbitt, R. W. 1986. Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas: evidence from high-pressure experiments and natural rocks. J VOLCANOL GEOTHERM RES 29, 293309.Google Scholar
Taylor, S. R.&McLennan, S. M. 1985. The continental crust: its composition and evolution. Oxford: Blackwell.Google Scholar
Taylor, R. N., Nesbitt, R. W., Vidal, P., Harmon, R. S., Auvray, B.&Croudace, I. W. 1994. Mineralogy, chemistry, and genesis of the boninite series volcanics, Chichijima, Bonin Islands, Japan. J PETROL 35, 577617.CrossRefGoogle Scholar
Thompson, A. B.&Ellis, D. J. 1994 CaO + MgO + Al2O3 + SiO2 + H2O to 35 kb: amphibole, talc, and zoisite dehydration and melting reactions in the silica-excess part of the system and their possible significance in subduction zones, amphibolite melting, and magma fractionation. AM J SCI 294, 1229–89.CrossRefGoogle Scholar
Tsuchiya, N.&Kanisawa, S. 1994. Early Cretaceous Sr-rich silicic magmatism by slab melting in the Kitakami Mountains, northeast Japan. J GEOPHYS RES 99, 22 205–20.Google Scholar
Ulmer, P.&Trommsdorff, V. 1995. Serpentine stability to mantle depths and subduction-related magmatism. SCIENCE 268, 858–61.CrossRefGoogle ScholarPubMed
Wedepohl, K. H. 1995. The composition of the continental crust. GEOCHIM COSMOCHIM ACTA 59, 1217–32.CrossRefGoogle Scholar
Winther, K. T.&Newton, R. C. 1991. Experimental melting of hydrous low-K tholeiite: evidence on the origin of Archaean cratons. BULL GEOL SOC DENMARK 39, 213–28.Google Scholar
Wolf, M. B.&Wyllie, P. J. 1991. Dehydration-melting of solid amphibolite at 10 kbar: textural development, liquid interconnectivity and applications to the segregation of magmas. MINERAL PETROL 44, 151–79.CrossRefGoogle Scholar
Wolf, M. B.&Wyllie, P. J. 1994. Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time. CONTRIB MINERAL PETROL 115, 369–83.Google Scholar
Wyllie, P. J. 1982. Subduction products according to experimental prediction. GEOL SOC AM BULL 93, 468–76.Google Scholar
Wyllie, P. J. 1984. Sources of granitoid magmas at convergent plate boundaries. PHYSICS EARTH PLANET INTER 35, 12–8.Google Scholar
Yogodzinski, G. M., Volynets, O. N., Koloskov, A. V., Seliverstov, N. I.&Matuenkov, V. V. 1994. Magnesian andesites and the subduction component in a strongly calc-alkaline series at Piip volcano, far western Aleutians. J PETROL 35, 163204.Google Scholar
Yogodzinski, G. M., Kay, R. W., Volynets, O. N., Koloskov, A. V.&Kay, S. M. 1995. Magnesian andesite in the western Aleutian Komandorsky region: implications for slab melting and processes in the mantle wedge. GEOL SOC AM BULL 107, 505–19.Google Scholar