Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T18:37:14.113Z Has data issue: false hasContentIssue false

On the morphospace of eurypterine sea scorpions

Published online by Cambridge University Press:  09 September 2021

Russell D. C. BICKNELL*
Affiliation:
Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
Lisa AMATI
Affiliation:
Paleontology, New York State Museum, 222 Madison Avenue, Albany, NY 12230, USA.
*
*Corresponding author. Email: rdcbicknell@gmail.com

Abstract

Eurypterids (sea scorpions) are a group of extinct, marine euchelicerates that have an extensive Palaeozoic record. Despite lacking a biomineralised exoskeleton, eurypterids are abundantly preserved within select deposits. These collections make statistical analyses comparing the morphology of different genera possible. However, eurypterid shape has not yet been documented with modern geometric morphometric tools. Here, we summarise the previous statistical assessments of eurypterid morphology and expand this research by presenting landmark and semi-landmark analyses of 115 eurypterid specimens within the suborder Eurypterina. We illustrate that lateral compound eye morphology and position drives specimen placement in morphospace and separates proposed apex predators from more generalist forms. Additionally, evidence for size clusters in Eurypterus that may reflect ontogeny is uncovered. We highlight the use of geometric morphometric analyses in supporting the naming of new taxa and demonstrate that these shape data represent a novel means of understanding inter-generic ontogenetic trajectories and uncovering developmental changes within the diverse euarthropod group.

Type
Articles
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

6. References

Adams, D. C., Rohlf, F. J. & Slice, D. E. 2004. Geometric morphometrics: ten years of progress following the ‘revolution’. Italian Journal of Zoology 71, 516.CrossRefGoogle Scholar
Adams, D. C., Rohlf, F. J. & Slice, D. E. 2013. A field comes of age: geometric morphometrics in the 21st century. Hystrix 24, 714.Google Scholar
Adams, D. C., Collyer, M. L. & Kaliontzopoulou, A. 2020. Geomorph: software for geometric morphometric analyses. R package version 4.0. https://cran.r-project.org/package=geomorph.Google Scholar
Agassiz, J. L. R. (1839) Fishes of the Upper Ludlow rock. In Murchison, R. I. (ed.) The Silurian system, 605–07. London: John Murray.Google Scholar
Andrews, H. E., Brower, J. C., Gould, S. J. & Reyment, R. A. 1974. Growth and variation in Eurypterus remipes DeKay. Bulletin of the Geological Institution of the University of Uppsala 4, 81114.Google Scholar
Bicknell, R. D. C. 2019. Xiphosurid from the Upper Permian of Tasmania confirms Palaeozoic origin of Austrolimulidae. Palaeontologia Electronica 22, 113.Google Scholar
Bicknell, R. D. C., Paterson, J. R., Caron, J.-B. & Skovsted, C. B. 2018. The gnathobasic spine microstructure of recent and Silurian chelicerates and the Cambrian artiopodan Sidneyia: functional and evolutionary implications. Arthropod Structure & Development 47, 1224.CrossRefGoogle ScholarPubMed
Bicknell, R. D. C., Žalohar, J., Miklavc, P., Celarc, B., Križnar, M. & Hitij, T. 2019. A new limulid genus from the Strelovec formation (Middle Triassic, Anisian) of northern Slovenia. Geological Magazine 156, 2017–30.CrossRefGoogle Scholar
Bicknell, R. D. C., Smith, P. M. & Poschmann, M. 2020. Re-evaluating evidence of Australian eurypterids. Gondwana Research 86, 164–81.CrossRefGoogle Scholar
Bicknell, R. D. C. & Amati, L. 2021. Supplemental information for “On the morphospace of eurypterine sea scorpions.” OSF Retrieved from osf.io/xbtvp.CrossRefGoogle Scholar
Bicknell, R. D. C. & Pates, S. 2019. Xiphosurid from the Tournaisian (Carboniferous) of Scotland confirms deep origin of Limuloidea. Scientific Reports 9, 17102.CrossRefGoogle ScholarPubMed
Bicknell, R. D. C. & Shcherbakov, D. E. 2021. New austrolimulid from Russia supports role of early Triassic horseshoe crabs as opportunistic taxa. PeerJ 9, e11709.CrossRefGoogle ScholarPubMed
Braddy, S. J. 2001. Eurypterid palaeoecology: palaeobiological, ichnological and comparative evidence for a ‘mass–moult–mate’ hypothesis. Palaeogeography, Palaeoclimatology, Palaeoecology 172, 115–32.CrossRefGoogle Scholar
Braddy, S. J., Poschmann, M. & Tetlie, O. E. 2008. Giant claw reveals the largest ever arthropod. Biology Letters 4, 106–09.CrossRefGoogle ScholarPubMed
Brower, J. C. & Veinus, J. 1974. The statistical zap versus the shotgun approach. Mathematical Geology 6, 311–32.CrossRefGoogle Scholar
Brower, J. C. & Veinus, J. 1978. Multivariate analysis of allometry using point coordinates. Journal of Paleontology 52, 1037–53.Google Scholar
Chlupáč, I. 1994. Pterygotid eurypterids (Arthropoda, Chelicerata) in the Silurian and Devonian of Bohemia. Journal of the Czech Geological Society 39, 147–62.Google Scholar
Chlupáč, I., Ferrer, E., Magrans, J., Mañé, R. & Sanz López, J. 1997. Early Devonian eurypterids with Bohemian affinities from Catalonia (NE Spain). Batalleria 7, 921.Google Scholar
Ciurca, S. J. Jr. 1978. Eurypterid horizons and the stratigraphy of Upper Silurian and Lower Devonian rocks of central-eastern New York State, New York State Geological Association 50th Annual Meeting, Syracuse, New York, 225–249. Syracuse: Syracuse University.Google Scholar
Clarke, J. M. 1907. The Eurypterus shales of the Shawangunk Mountains in Eastern New York. New York State Museum Bulletin 107, 295326.Google Scholar
Clarke, J. M. & Ruedemann, R. 1912. The Eurypterida of New York. New York State Museum Memoir 14, 1628.Google Scholar
Cuggy, M. B. 1994. Ontogenetic variation in Silurian eurypterids from Ontario and New York State. Canadian Journal of Earth Sciences 31, 728–32.CrossRefGoogle Scholar
DeKay, J. E. 1825. Observations on a fossil crustaceous animal of the order Branchiopoda. Annals of the New York Lyceum of Natural History 1, 375–77.Google Scholar
Dunlop, J. A., Penney, D. & Jekel, D. 2020. A summary list of fossil spiders and their relatives. World Spider Catalog, version 20.5. Natural History Museum Bern. http://wsc.nmbe.ch.Google Scholar
Gray, J. A., Sherratt, E., Hutchinson, M. N. & Jones, M. E. H. 2019. Changes in ontogenetic patterns facilitate diversification in skull shape of Australian agamid lizards. BMC Evolutionary Biology 19, 7.CrossRefGoogle ScholarPubMed
Hall, J. 1859. Natural history of New York, paleontology III. New York: New York State Museum.Google Scholar
Harlan, R. 1834. Critical notices of various organic remains hitherto discovered in North America. Transactions of the Geological Society of Pennsylvania 1, 46112.Google Scholar
Hughes, E. S. & Lamsdell, J. C. 2021. Discerning the diets of sweep-feeding eurypterids: assessing the importance of prey size to survivorship across the Late Devonian mass extinction in a phylogenetic context. Paleobiology 47, 271–83.CrossRefGoogle Scholar
Kjellesvig-Waering, E. N. 1958. The genera, species and subspecies of the family Eurypteridae, Burmeister, 1845. Journal of Paleontology 32, 1107–48.Google Scholar
Kjellesvig-Waering, E. N. 1961. Eurypterids of the Devonian Holland Quarry Shale of Ohio. Fieldiana. Geology 14, 7998.Google Scholar
Kjellesvig-Waering, E. N. & Heubusch, C. A. 1962. Some Eurypterida from the Ordovician and Silurian of New York. Journal of Paleontology 36, 211–21.Google Scholar
Kues, B. S. & Kietzke, K. K. 1981. A large assemblage of a new eurypterid from the Red Tanks Member, Madera Formation (late Pennsylvanian-early Permian) of New Mexico. Journal of Paleontology 55, 709–29.Google Scholar
Lamsdell, J. C., Briggs, D. E. G., Liu, H. P., Witzke, B. J. & McKay, R. M. 2015. The oldest described eurypterid: a giant Middle Ordovician (Darriwilian) megalograptid from the Winneshiek Lagerstätte of Iowa. BMC Evolutionary Biology 15, 169.CrossRefGoogle ScholarPubMed
Lamsdell, J. C. & Braddy, S. J. 2009. Cope's Rule and Romer's theory: patterns of diversity and gigantism in eurypterids and Palaeozoic vertebrates. Biology Letters 6, 265–09.CrossRefGoogle ScholarPubMed
Lamsdell, J. C. & Selden, P. A. 2013. Babes in the wood–a unique window into sea scorpion ontogeny. BMC Evolutionary Biology 13, 146.CrossRefGoogle Scholar
Lamsdell, J. C. & Selden, P. A. 2017. From success to persistence: identifying an evolutionary regime shift in the diverse Paleozoic aquatic arthropod group Eurypterida, driven by the Devonian biotic crisis. Evolution 71, 95110.CrossRefGoogle ScholarPubMed
Leutze, W. P. 1961. Arthropods from the Syracuse Formation, Silurian of New York. Journal of Paleontology 35, 4964.Google Scholar
Lustri, L., Laibl, L. & Bicknell, R. D. C. 2021. A revision of Prolimulus woodwardi Fritsch, 1899 with comparison to other paedomorphic belinurids. PeerJ 9, e10980.CrossRefGoogle ScholarPubMed
McCoy, V. E., Lamsdell, J. C., Poschmann, M., Anderson, R. P. & Briggs, D. E. G. 2015. All the better to see you with: eyes and claws reveal the evolution of divergent ecological roles in giant pterygotid eurypterids. Biology Letters 11, 20150564.CrossRefGoogle ScholarPubMed
Meek, F. B. & Worthen, A. H. 1868. Preliminary notice of a scorpion, a Eurypterus? and other fossils from the coal measures of Illinois and Iowa. American Journal of Science and Arts, Series 2, 25.Google Scholar
Palci, A. & Lee, M. S. Y. 2019. Geometric morphometrics, homology and cladistics: review and recommendations. Cladistics 35, 230–42.CrossRefGoogle ScholarPubMed
Palmer, A. R. 1957. Ontogenetic development of two olenellid trilobites. Journal of Paleontology 31, 105–28.Google Scholar
Poschmann, M. 2014. Note on the morphology and systematic position of Alkenopterus burglahrensis (Chelicerata: Eurypterida: Eurypterina) from the Lower Devonian of Germany. Paläontologische Zeitschrift 88, 223–06.CrossRefGoogle Scholar
Poschmann, M., Schoenemann, B. & McCoy, V. E. 2016. Telltale eyes: the lateral visual systems of Rhenish Lower Devonian eurypterids (Arthropoda, Chelicerata) and their palaeobiological implications. Palaeontology 59, 295304.CrossRefGoogle Scholar
Poschmann, M. & Tetlie, O. E. 2006. On the Emsian (Lower Devonian) arthropods of the Rhenish Slate Mountains: 5. Rare and poorly known eurypterids from Willwerath, Germany. Paläontologische Zeitschrift 80, 325–43.CrossRefGoogle Scholar
Rohlf, F. J. 1998. On applications of geometric morphometrics to studies of ontogeny and phylogeny. Systematic Biology 47, 147–58.CrossRefGoogle ScholarPubMed
Ruebenstahl, A., Ciurca, S. J. & Briggs, D. E. G. 2021. A giant Eurypterus from the Silurian (Pridoli) Bertie Group of North America. Bulletin of the Peabody Museum of Natural History 62, 313.CrossRefGoogle Scholar
Ruedemann, R. 1916. Account of some new or little known species of fossils, mostly from the Palaeozoic rocks of New York. New York State Museum Bulletin 189, 7112.Google Scholar
Ruedemann, R. 1934. Eurypterids from the Devonian of Beartooth Butte, Wyoming. Proceedings of the American Philosophical Society 73, 163–07.Google Scholar
Ruedemann, R. 1935. A review of the eurypterid rami of the genus Pterygotus with the descriptions of two new Devonian species. Annals of the Carnegie Museum 24, 6972.Google Scholar
Sarle, C. J. 1903. A new eurypterid fauna from the base of the Salina of western New York. New York State Museum Bulletin 69, 1080–108.Google Scholar
Selden, P. A. 1984. Autecology of Silurian eurypterids. Special Papers in Palaeontology 32, 3954.Google Scholar
Strand, E. 1942. Miscellanea nomenclatorica zoologica et palaeontologica. Folia Zoologica et Hydrobiologica 11, 386402.Google Scholar
Tetlie, O. E. 2007. Distribution and dispersal history of Eurypterida (Chelicerata). Palaeogeography, Palaeoclimatology, Palaeoecology 252, 557–74.CrossRefGoogle Scholar
Tetlie, O. E. & Briggs, D. E. G. 2009. The origin of pterygotid eurypterids (Chelicerata: Eurypterida). Palaeontology 52, 1141–08.CrossRefGoogle Scholar
Tollerton, V. P. 1989. Morphology, taxonomy, and classification of the order Eurypterida Burmeister, 1843. Journal of Paleontology 63, 642–57.CrossRefGoogle Scholar
Vrazo, M. B. & Braddy, S. J. 2011. Testing the ‘mass-moult-mate’ hypothesis of eurypterid palaeoecology. Palaeogeography, Palaeoclimatology, Palaeoecology 311, 6373.CrossRefGoogle Scholar
Waterston, C. D. 1964. Observations on pterygotid eurypterids. Transactions of the Royal Society of Edinburgh 66, 933.CrossRefGoogle Scholar
Waterston, C. D. 1979. Problems of functional morphology and classification in stylonuroid eurypterids (Chelicerata, Merostomata), with observations on the Scottish Silurian Stylonuroidea. Transactions of the Royal Society of Edinburgh 70, 251322.CrossRefGoogle Scholar
Webster, M. 2007. Ontogeny and evolution of the early Cambrian trilobite genus Nephrolenellus (Olenelloidea). Journal of Paleontology 81, 1168–93.CrossRefGoogle Scholar