Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T03:41:20.577Z Has data issue: false hasContentIssue false

Lateglacial environmental change in Scotland

Published online by Cambridge University Press:  23 November 2017

Mike WALKER
Affiliation:
School of Archaeology, History and Anthropology, Trinity Saint David, University of Wales, Lampeter; Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, Wales SY23 3DB, UK.
John LOWE
Affiliation:
Centre for Quaternary Research, Department of Geography, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK.

Abstract

This paper reviews the evidence for environmental change during the Lateglacial period (c.14.7–11.7 ka), perhaps the most intensively studied episode in the Quaternary history of Scotland. It considers first the stratigraphic subdivision and nomenclature of the Lateglacial, before proceeding to a discussion of the various lines of proxy evidence that have been used to reconstruct the spatial and temporal patterns of environmental change during this time period. These include pollen and plant macrofossil data; coleopteran and chironomid records; diatom data; stable isotope and geochemical records; and evidence for human activity. The paper then considers the principal methods that have been employed to date and correlate Lateglacial events: radiocarbon dating; surface exposure dating; varve chronology; and tephrochronology. This is followed by an examination of the constraints imposed on environmental reconstructions, an account of the ways in which the evidence can be employed in the development of an event stratigraphy for the Lateglacial in Scotland, and a proposal for a provisional Lateglacial type sequence (stratotype) at Whitrig Bog in SE Scotland. Emphasis is placed throughout on the potential linkages between the Scottish records and the isotopic signal in the Greenland ice cores, which forms the stratigraphic template for the N Atlantic region. The paper concludes with a discussion of the strategies and approaches that should underpin future research programmes on Lateglacial environmental change in Scotland.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

8. References

Alhonen, P. 1968. On the Late-glacial and early Postglacial diatom succession in Loch of Park, Aberdeenshire, Scotland. Memoranda Societatis pro Fauna et Flora Fennica 44, 1320.Google Scholar
Ammann, B., van Leeuw, J. F. N., van der Knaap, W. & Tinner, W. 2013. Vegetation responses to rapid warming and to minor climatic fluctuations during the Late-Glacial Interstadial (GI-1) at Gerzensee, Switzerland. Palaegeography, Palaeoecology, Palaeoclimatology 391, 4059.Google Scholar
Atkinson, T. C., Briffa, K. R. & Coope, G. R. 1987. Seasonal temperatures in Britain during the last 22,000 years, reconstructed using beetle remains. Nature 325, 587–93.Google Scholar
Bakke, J., Lie, Ø., Heegaard, E., Dokken, T., Haug, G. H., Birks, H. H., Dulski, P. & Nilsen, T. 2009. Rapid oceanic and atmospheric changes during the Younger Dryas cold period. Nature Geoscience 2, 202–05.Google Scholar
Balco, G., Stone, J., Lifton, N. & Dunai, T. 2008. A simple, internally consistent, and easily accessible means of calculating surface exposure ages and erosion rates from 10Be and 26Al measurements. Quaternary Geochronology 3, 174–95.Google Scholar
Ballantyne, C. K. 1989. The Loch Lomond Readvance on the Isle of Skye, Scotland: glacier reconstructions and palaeoclimatic implications. Journal of Quaternary Science 4, 95108.Google Scholar
Ballantyne, C. K. 2010. Extent and deglacial chronology of the last British–Irish Ice Sheet: implications of exposure dating using cosmogenic isotopes. Journal of Quaternary Science 25, 515–34.Google Scholar
Ballantyne, C. K. 2012. Chronology of glaciation and deglaciation during the Loch Lomond (Younger Dryas) Stade in the Scottish Highlands: implications of recalibrated 10Be exposure ages. Boreas 41, 513–26.Google Scholar
Ballantyne, C. K., Schnabel, C. & Xu, S. 2009. Readvance of the last British–Irish Ice Sheet during Greenland Interstade 1 (GI-1): theWester Ross Readvance, NW Scotland. Quaternary Science Reviews 28, 783–89.Google Scholar
Ballantyne, C. K., Rinterknecht, V. & Gheorghiu, D. M. 2013. Deglaciation chronology of the Galloway Hills Ice Centre, southwest Scotland. Journal of Quaternary Science 28, 412–20.Google Scholar
Ballantyne, C. K. & Small, D. In press. The Last Scottish Ice Sheet. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 108, ███–███Google Scholar
Ballantyne, C. K. & Stone, J. O. 2012. Did large ice caps persist on low ground in northwest Scotland during the Lateglacial Interstade? Journal of Quaternary Science 27, 297306.Google Scholar
Ballin, T. B., Saville, A., Tipping, R. & Ward, T. 2010. An Upper Palaeolithic flint and chert assemblage from Howburn Farm, South Lanarkshire, Scotland: first results. Oxford Journal of Archaeology 29, 323–60.Google Scholar
Ballin, T. B. & Saville, A. 2003. An Ahrensburgian-type tanged point from Shieldaig, Wester Ross, Scotland, and its implications. Oxford Journal of Archaeology 22, 115–31.Google Scholar
Bedford, A., Jones, R. T., Lang, B., Brooks, S. & Marshall, J. D. 2004. A Late-glacial chironomid record from Hawes Water, northwest England. Journal of Quaternary Science 19, 271–80.Google Scholar
Bendle, J. M., Palmer, A. P. & Carr, S. J. 2015. A comparison of micro-CT and thin section analysis of Lateglacial glaciolacustrine varves from Glen Roy, Scotland. Quaternary Science Reviews 114, 6177.Google Scholar
Benn, D. I., Lowe, J. J. & Walker, M. J. C. 1992. Glacier response to climatic change during the Loch Lomond Stadial and early Flandrian: geomorphological and palynological evidence from the Isle of Skye, Scotland. Journal of Quaternary Science 7, 125–44.Google Scholar
Benn, D. I. & Ballantyne, C. K. 2005. Palaeoclimatic reconstructions from Loch Lomond Readvance glaciers in the West Drumochter Hills, Scotland. Journal of Quaternary Science 20, 577–92.Google Scholar
Bickerdike, H. L., Ó Cofaigh, C., Evans, D. J. A. & Stokes, C. R. 2017. Glacial land systems, retreat dynamics and controls on Loch Lomond Stadial (Younger Dryas) glaciation in Britain. Boreas. 10.1111/bor.12259.Google Scholar
Birks, H. H. 1984. Late-Quaternary pollen and plant macrofossil stratigraphy at Lochan an Druim, northwest Scotland. In Haworth, E. Y. & Lund, J. W. G. (eds) Lake Sediments and Environmental History: Studies in Palaeolimnology and Palaeoecology in Honour of Winifred Tutin, 377404. Leicester: University of Leicester Press. 411 pp.Google Scholar
Birks, H. H. 2003. The importance of plant macrofossils in the reconstruction of late-glacial vegetation and climate: examples from Scotland, western Norway and Minnesota, USA. Quaternary Science Reviews 22, 453–73.Google Scholar
Birks, H. H., Battarbee, R. W. & Birks, H. J. B. 2000. The development of the aquatic ecosystem at Kråkenes Lake, western Norway, during the late glacial and early Holocene – a synthesis. Journal of Paleolimnology 23, 91114.Google Scholar
Birks, H. H. & Birks, H. J. B. 2000. Future uses of pollen analysis must include plant macrofossils. Journal of Biogeography 27, 3135.Google Scholar
Birks, H. H. & Birks, H. J. B. 2014. To what extent did changes in July temperature influence Lateglacial vegetation patterns in NW Europe? Quaternary Science Reviews 106, 262–77.Google Scholar
Birks, H. H. & Mathewes, R. W. 1978. Studies in the vegetational history of Scotland. V. Late Devensian and Early Flandrian pollen and macrofossil stratigraphy at Abernethy Forest, Inverness-shire. New Phytologist 80, 455–84.Google Scholar
Birks, H. J. B. 1973. The Past and Present Vegetation of the Isle of Skye. A Palaeoecological Study. Cambridge: Cambridge University Press. 368 pp.Google Scholar
Birks, H. J. B., Heiri, O., Seppä, H. & Bjune, A. E. 2010. Strengths and weaknesses of quantitative climate reconstructions based on Late-Quaternary biological proxies. The Open Ecology Journal 3, 68110.Google Scholar
Birnie, J. F. 2008. Devensian Lateglacial palaeoecological changes in Shetland. Boreas 29, 205–18.Google Scholar
Bishop, W. W. & Coope, G. R. 1977. Stratigraphical and faunal evidence for Lateglacial and Early Flandrian environments in South-West Scotland. In Gray, J. M. & Lowe, J. J. (eds) Studies in the Scottish Lateglacial Environment, 61-88. Oxford: Pergamon Press. xiii+197 pp.Google Scholar
Björck, S., Walker, M. J. C., Cwynar, L., Johnsen, S., Knudsen, K.-L., Lowe, J. J., Wohlfarth, B. & INTIMATE members. 1998. An event stratigraphy for the Last Termination in the North Atlantic region based on the Greenland ice core record: a proposal by the INTIMATE group. Journal of Quaternary Science 13, 283–92.Google Scholar
Blockley, S. P. E., Bourne, A. J., Brauer, A., Davies, S. M, Hardiman, M., Harding, P. R., Lane, C. S., MacLeod, A., Matthews, I. P., Pyne-O'Donnell, S. D. F., Rasmussen, S. O., Wulf, S. & Zanchetta, G. 2014. Tephrochronology and the extended INTIMATE (integration of ice-core, marine and terrestrial records) event stratigraphy (8–128 ka b2k). Quaternary Science Reviews 106, 88100.Google Scholar
Boomer, I., von Grafenstein, U. & Moss, A. 2012. Lateglacial to early Holocene multiproxy record from Loch Assynt, NW Scotland. Proceedings of the Geologists’ Association 123, 109–16.Google Scholar
Bradley, S. L., Milne, G. A., Shennan, I. & Edwards, R. 2011. An improved glacial isostatic adjustment model for the British Isles. Journal of Quaternary Science 26, 541–52.Google Scholar
Bradwell, T., Fabel, D., Stoker, M., Mathers, H., McHargue, L. & Howe, J. 2008. Ice caps existed throughout the Lateglacial Interstadial in northern Scotland. Journal of Quaternary Science 23, 401–07.Google Scholar
Bromley, R. M., Putnam, A. E., Rademaker, K. M., Loell, T., Schaefer, J. M., Hall, B., Winckler, G., Birkel, S. D. & Borns, H. W. 2014. Younger Dryas deglaciation of Scotland driven by warming summers. Proceedings of the National Academy of Sciences of the United States of America 111, 6215–19.Google Scholar
Bronk Ramsey, C. 2008. Depositional models for chronological records. Quaternary Science Reviews 27, 4260.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–60.Google Scholar
Bronk Ramsey, C., Albert, P., Blockley, S. P. E., Hardiman, M., Housley, R. A., Lane, C. S., Lee, S., Matthews, I. P., Smith, V. C. & Lowe, J. J. 2015. Improved age estimates for important Late Quaternary European tephra horizons in the RESET lattice. Quaternary Science Reviews 118, 1832.Google Scholar
Brooks, S. J., Mayle, F. E. & Lowe, J. J. 1997a. Chironomid-based Lateglacial climatic reconstruction for southeast Scotland. Journal of Quaternary Science 12, 161–67.Google Scholar
Brooks, S. J., Lowe, J. J. & Mayle, F. E. 1997b. The Late Devensian Lateglacial palaeoenvironmental record from Whitrig Bog, SE Scotland. 2. Chironomidae (Insects: Diptera). Boreas 26, 297308.Google Scholar
Brooks, S. J., Langdon, P. G. & Heiri, O. 2007. The Identification and Use of Palaearctic Chironomidae Larvae in Palaeoecology. Quaternary Research Association Technical Guide 10. London: Quaternary Research Association. 276 pp.Google Scholar
Brooks, S. J., Matthews, I. P., Birks, H. H. & Birks, H. J. B. 2012a. High resolution Lateglacial and early-Holocene summer air temperature record from Scotland inferred from chironomid assemblages. Quaternary Science Reviews 41, 6782.Google Scholar
Brooks, S. J., Axford, Y., Heiri, O., Langdon, P. G. & Larocque-Tobler, I. 2012b. Chironomids can be reliable proxies for Holocene temperatures. A comment on Velle et al. (2010). The Holocene 22, 14951500.Google Scholar
Brooks, S. J., Davies, K. L., Mather, K. A., Matthews, I. P. & Lowe, J. J. 2016. Chironomid-inferred summer temperatures for the Last Glacial–Interglacial Transition from a lake sediment sequence in Muir Park Reservoir, west-central Scotland. Journal of Quaternary Science 31, 214–24.Google Scholar
Brooks, S. J. & Birks, H. J. B. 2000. Chironomid-inferred Late-glacial air temperatures at Whitrig Bog, southeast Scotland. Journal of Quaternary Science 15, 759–64.Google Scholar
Brooks, S. J. & Langdon, P. G. 2014. Summer temperature gradients in northwest Europe during the Lateglacial–Holocene transition (15–10 ka BP) inferred from chironomid assemblages. Quaternary International 341, 8090.Google Scholar
Brown, I. M. 1994. Former glacial lakes in the Dee Valley: origin, drainage and significance. Scottish Journal of Geology 52, 147–58.Google Scholar
Brown, T. A., Farwell, G. W., Grootes, P. M. & Schmidt, F. H. 1992. Radiocarbon AMS dating of pollen extracted from peat samples. Radiocarbon 34, 550–56.Google Scholar
Buckland, P. C. & Sadler, J. 1997. Insects. In Edwards, K. J. & Ralston, I. B. M. (eds) Scotland After the Ice Age. Environment, Archaeology, History 8000 BC–AD 1000, 105–98. Edinburgh: Edinburgh University Press. 336 pp.Google Scholar
Candy, I., Abrook, A., Elliott, F., Lincoln, P., Matthews, I. P. & Palmer, A. 2016. Oxygen isotopic evidence for high-magnitude, abrupt climatic events during the Lateglacial Interstadial in northwest Europe: analysis of a lacustrine sequence from the site of Tirinie, Scottish Highlands. Journal of Quaternary Science 31, 607–21.Google Scholar
Charman, D. 1994. Late-glacial and Holocene vegetation history of the Flow Country, northern Scotland. New Phytologist 127, 155–68.Google Scholar
Clark, C. D., Hughes, A. L. C., Greenwood, S. L., Jordan, C. & Sejrup, H. P. 2012. Pattern and timing of retreat of the last British–Irish ice sheet. Quaternary Science Reviews 44, 112–46.Google Scholar
Coope, G. R. 1962. Coleoptera from a peat interbedded between two boulder clays at Burnhead near Airdrie. Transactions of the Geological Society of Glasgow 24, 279–86.Google Scholar
Coope, G. R. 1968. Fossil beetles collected by James Bennie form Late Glacial silts at Corstorphine, Edinburgh. Scottish Journal of Geology 4, 339–48.Google Scholar
Coope, G. R. 1977. Fossil coleopteran assemblages as sensitive indicators of climatic changes during the Devensian (last) cold stage. Philosophical Transactions of the Royal Society of London Series B280, 313–40.Google Scholar
Coope, G. R., Lemdahl, G., Lowe, J. J. & Walkling, A. 1998. Temperature gradients in northern Europe during the last glacial-interglacial transition (14–914C kyr BP) interpreted from coleopteran assemblages. Journal of Quaternary Science 13, 419–33.Google Scholar
Coope, G. R. & Lemdahl, G. 1995. Regional differences in the Lateglacial climate of northern Europe based on coleopteran analysis. Journal of Quaternary Science 10, 391–95.Google Scholar
Coope, G. R. & Pennington, W. P. 1977. The Windermere Interstadial of the Late Devensian. Philosophical Transactions of the Royal Society, London B280, 337–39.Google Scholar
Coope, G. R. & Rose, J. 2008. Palaeotemperatures and palaeoenvironments during the Younger Dryas: arthropod evidence from Croftamie at the type area of the Loch Lomond Readvance, and significance for the timing of glacier expansion during the Lateglacial period in Scotland. Scottish Journal of Geology 44, 4349.Google Scholar
Davies, S. M. 2002. Extending the known distribution layers of micro-tephra layers of last glacial-interglacial transition age in Europe. Unpublished PhD Thesis, University of London.Google Scholar
Davies, S. M. 2015. Cryptotephras: the revolution in correlation and precision dating. Journal of Quaternary Science 30, 114–30.Google Scholar
Davies, S. M., Abbott, P. M., Pearce, N. J. G., Wastegård, S. & Blockley, S. P. E. 2012. Integrating the INTIMATE records using tephrochronology: rising to the challenge. Quaternary Science Reviews 36, 1127.Google Scholar
Donner, J. J. 1957. The geology and vegetation of Late-glacial retreat stages in Scotland. Transactions of the Royal Society of Edinburgh 63, 221–64.Google Scholar
Donner, J. J. 1958. Loch Mahaick: a Late-glacial site in Perthshire. New Phytologist 57, 183–86.Google Scholar
Edwards, K. J. & Whittington, G. 2010. Lateglacial palaeoenvironmental investigations at western Cartmore Farm, Fife, and their significance for patterns of vegetation and climate change in east-central Scotland. Review of Palaeobotany and Palynology 159, 1434.Google Scholar
Elias, S. 2013. Beetle records: Overview. In Elias, S. A. (ed.) Encyclopedia of Quaternary Science (2nd edition), 161–72. Amsterdam: Elsevier. 3,888 pp.Google Scholar
Elias, S. A. & Matthews, I. P. 2014. A comparison of reconstructions based on aquatic and terrestrial beetle assemblages: Late glacial–Early Holocene temperature reconstructions for the British Isles. Quaternary International 341, 6979.Google Scholar
Engstrom, D. R. & Wright, H. E. 1984. Chemical stratigraphy of lake sediments as a record of environmental change. In Haworth, E. Y. & Lund, J. W. G. (eds) Lake Sediments and Environmental History: Studies in Palaeolimnology and Palaeoecology in Honour of Winifred Tutin, 1169. Leicester: Leicester University Press. 411 pp.Google Scholar
Evans, D. J. A., Clark, C. D. & Mitchell, W. A. 2005. The last British Ice Sheet: a review of the evidence utilised in the compilation of the glacial map of Britain. Earth-Science Reviews 70, 253312.Google Scholar
Everest, J. D. & Kubik, P. W. 2006. The deglaciation of eastern Scotland: cosmogenic 10Be evidence for a Lateglacial stillstand. Journal of Quaternary Science 21, 95104.Google Scholar
Fabel, D., Ballantyne, C. K. & Xu, S. 2012. Trimlines, blockfields, mountain-top erratics and the vertical dimensions of the last British–Irish Ice Sheet in NW Scotland. Quaternary Science Reviews 55, 91102.Google Scholar
Fletcher, W., Zielhofer, C., Mischke, S., Campbell, J., Bryant, C., Fink, D. & Xu, X. 2016. AMS radiocarbon dating of pollen concentrates in a karstic lake system. Geophysical Research Abstracts 18, EGU2016-13109-1. EGU General Assembly, 2016.Google Scholar
Gheorghiu, D. M., Fabel, D., Hansom, J. D. & Xu, S. 2012. Lateglacial surface exposure dating in the Monadhliath Mountains, Central Highlands, Scotland. Quaternary Science Reviews 41, 132–46.Google Scholar
Godwin, H. & Willis, E. H. 1959. Cambridge University Natural Radiocarbon Measurements 1. Radiocarbon 1, 6375.Google Scholar
Golledge, N. R. 2010. Glaciation of Scotland during the Younger Dryas stadial: a review. Journal of Quaternary Science 25, 550–66.Google Scholar
Golledge, N. R., Favel, D., Everest, J. D., Freeman, S. & Binnie, S. 2007. First cosmogenic 10Be age constraint on the timing of Younger Dryas glaciation and ice cap thickness, western Scotland. Journal of Quaternary Science 22, 785–91.Google Scholar
Gray, J. M. & Brooks, C. L. 1972. The Loch Lomond Readvance moraines of Mull and Menteith. Scottish Journal of Geology 8, 95103.Google Scholar
Gray, J. M. & Lowe, J. J. 1977. The Scottish Lateglacial environment: a synthesis. In Gray, J. M. & Lowe, J. J. (eds) Studies in the Scottish Lateglacial Environment, 163–81. Oxford: Pergamon Press. xiii+197 pp.Google Scholar
Ham, N. R. & Attig, J. 1996. Ice wastage and landscape evolution along the southern margin of the Laurentide Ice Sheet, north-central Wisonsin. Boreas 25, 171–86.Google Scholar
Haworth, E. Y. 1976. Two Late-Glacial (Late Devensian) diatom assemblage profiles from northern Scotland. New Phytologist 77, 227–56.Google Scholar
Head, M. & Gibbard, P. L. 2015. Formal subdivision of the Quaternary System/Period: past present and future. Quaternary International 383, 435.Google Scholar
Henriksen, M., Mangerud, J., Matiouchkov, A., Paus, A. & Svendsen, J. I. 2003. Lake stratigraphy implies an 80,000 yr delayed melting of buried dead ice in northern Russia. Journal of Quaternary Science 18, 663–79.Google Scholar
Hogg, A., Southon, J., Turney, C., Palmer, J., Bronk Ramsey, C., Fenwick, P., Boswijk, J., Büntgen, U., Friedrich, M., Helle, G., Hughen, K., Jones, R., Kromer, B., Noronha, S., Reinig, F., Reynard, L., Staff, R. & Wacker, L. 2016. Decadally resolved lateglacial radiocarbon evidence from New Zealand kauri. Radiocarbon 58, 709–33.Google Scholar
Huntley, B. 1994. Late Devensian and Holocene palaeoecology and palaeoenvironments of the Morrone birchwoods, Aberdeenshire, Scotland. Journal of Quaternary Science 9, 311–36.Google Scholar
Iversen, J. 1947. Plantevaekst, dyreliv og klima i det senglaciale denmark. Geologiska Föreningens Stockholm Förhandlingar 69, 6778.Google Scholar
Iversen, J. 1954. The Late-glacial flora of Denmark and its relation to climate and soil. Danmarks Geologiske Undersøgelse Series II, 80, 87115.Google Scholar
Jessen, K. 1949. Studies in the Late-Quaternary deposits and flora history of Ireland. Proceedings of the Royal Irish Academy 52B, 85290.Google Scholar
Jessen, K. & Farrington, A. 1938. The Bogs at Ballybetagh, near Dublin, with remarks on late-glacial conditions in Ireland. Proceedings of the Royal Irish Academy 44B, 205–60.Google Scholar
Kelly, T. J., Hardiman, M., Lovelady, M., Lowe, J. J., Matthews, I. P. & Blockley, S. P. E. 2017. Scottish early Holocene vegetation dynamics based on pollen and tephra records from Inverlair and Loch Etteridge, Invernesshire. Proceedings of the Geologists' Association 128, 125–35.Google Scholar
Kirk, W. & Godwin, E. H. 1963. A Lateglacial site at Loch Droma, Ross and Cromarty. Transactions of the Royal Society of Edinburgh 45, 225–48.Google Scholar
Lane, C. S., Brauer, A., Blockley, S. P. E. & Dulski, P. 2013. Volcanic ash reveals time-transgressive abrupt climate change during the Younger Dryas. Geology 41, 1251–54.Google Scholar
Lang, B., Brooks, S. J., Bedford, A., Jones, R. T., Birks, H. J. B. & Marshall, J. D. 2010. Regional consistency in Lateglacial chironomid-inferred temperatures from five sites in northwest England. Quaternary Science Reviews 29, 1528–38.Google Scholar
Lawson, T. J. 1993. Creag nan Uamh. In Gordon, J. E. & Sutherland, D. G. (eds) Quaternary of Scotland. Geological Conservation Review Series 6 127–33. London: Chapman & Hall. 695 pp.Google Scholar
Lawson, T. J. & Bonsall, C. 1986. Early settlement in Scotland: the evidence from Reindeer Cave, Assynt. Quaternary Newsletter 49, 107.Google Scholar
Leng, M. & Barker, P. 2006. A review of the oxygen isotope composition of lacustrine diatom silica for palaeoclimatic reconstruction. Earth Science Reviews 75, 527.Google Scholar
Leng, M. J. & Marshall, J. D. 2004. Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Science Reviews 23, 811–31.Google Scholar
Lincoln, P. 2011. A tephrostratigraphic and taphonomic study from Pulpit Hill, western Scotland. Unpublished MSc Thesis, Royal Holloway University of London.Google Scholar
Lowe, J. J. 1978. Radiocarbon-dated Lateglacial and Early Flandrian pollen profiles from the Teith Valley, Perthshire, Scotland. 1. Vegetational history. Pollen et Spores 20, 367–97.Google Scholar
Lowe, J. J., Birks, H. H., Brooks, S. J., Coope, G. R., Harkness, D. D., Mayle, F. E., Sheldrick, C., Turney, C. S. M. & Walker, M. J. C. 1999. The chronology of palaeoenvironmental changes during the Last Glacial–Holocene Transition: towards an event stratigraphy for the British Isles. Journal of the Geological Society London 156, 397410.Google Scholar
Lowe, J. J., Albert, P., Hardiman, M., MacLeod, A., Blockley, S. & Pyne-O'Donnell, S. 2008a. Tephrostratigraphical investigations of the basal sediment sequence at Loch Etteridge. In Palmer, A., Lowe, J. J. & Rose, J. (eds) The Quaternary of Glen Roy and Vicinity: Field Guide, 6065. London: Quaternary Research Association. 224 pp.Google Scholar
Lowe, J. J., Rasmussen, S. O., Björck, S., Hoek, W. Z., Steffensen, J. P., Walker, M. J. C., Yu, Z. & INTIMATE group. 2008b. Synchronisation of palaeoenvironmental events in the North Atlantic region during the Last Termination: a revised protocol recommended by the INTIMATE group. Quaternary Science Reviews 27, 617.Google Scholar
Lowe, J. J., Pyne-O'Donnell, S. & Timms, R. 2016. Tephra layers on Skye dating to the Lateglacial–early Holocene interval and their wider context. In Ballantyne, C. K. & Lowe, J. J. (eds) The Quaternary of the Isle of Skye, Field Guide, 140156. London: Quaternary Research Association. 172 pp.Google Scholar
Lowe, J. J. & Turney, C. S. M. 1997. Vedde Ash layer discovered in a small lake basin on the Scottish mainland. Journal of the Geological Society of London 154, 605–12.Google Scholar
Lowe, J. J. & Walker, M. J. C. 1977. The reconstruction of the Lateglacial environment in the southern and eastern Grampian Highlands. In Gray, J. M. & Lowe, J. J. (eds) Studies in the Scottish Lateglacial Environment, 101–18. Oxford: Pergamon Press. xiii + 197 pp.Google Scholar
Lowe, J. J. & Walker, M. J. C. 1986. Lateglacial and early Flandrian history of the Isle of Mull, Inner Hebrides, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 77, 1120.Google Scholar
Lowe, J. J. & Walker, M. J. C. 1997. Temperature variations in NW Europe during the last glacial-interglacial transition (15–9 14C ka BP) based upon the analysis of coleopteran assemblages. Quaternary Proceedings 5, 165–76.Google Scholar
Lowe, J. J. & Walker, M. J. C. 2000. Radiocarbon dating the last glacial-interglacial transition (ca. 14–9 14C ka BP): the need for new quality assurance protocols. Radiocarbon 42, 5368.Google Scholar
Lowe, J. J. & Walker, M. J. C. 2016. Environmental changes affecting Skye during the Lateglacial and early Holocene. In Ballantyne, C. K. & Lowe, J. J. (eds) The Quaternary of Skye: Field Guide, 112–39. London: Quaternary Research Association.Google Scholar
MacLeod, A. 2008. Tephrostratigraphy of the Loch Laggan East lake sequence. In Palmer, A., Lowe, J. & Rose, J. (eds) The Quaternary of Glen Roy and Vicinity: Field Guide, 8391. London: Quaternary Research Association. 224 pp.Google Scholar
MacLeod, A. 2010. The potential for developing an annually-resolved chronology of events in Scotland during the last glacial–interglacial transition (16–8 ka BP). Unpublished PhD Thesis, University of London.Google Scholar
MacLeod, A., Palmer, A., Lowe, J., Rose, J., Bryant, C. & Merritt, J. 2011. Timing of glacier response to Younger Dryas climatic cooling in Scotland. Global and Planetary Change 79, 264–74.Google Scholar
MacLeod, A., Matthews, I. P., Lowe, J. J., Palmer, A. P. & Albert, P. G. 2015. A second tephra isochron for the Younger Dryas period in northern Europe: the Abernethy Tephra. Quaternary Geochronology 28, 111.Google Scholar
Mannion, A. M. 1978. Late Quaternary deposits from southeast Scotland. II. The diatom assemblage of a marl core. Journal of Biogeography 5, 301–18.Google Scholar
Marshall, J. D., Jones, R. T., Crowley, S. F., Oldfield, F., Nash, S. & Bedford, A. 2002. A high resolution Late-Glacial isotopic record from Hawes Water, Northwest England: climatic oscillations, calibration and comparison of palaeotemperature proxies. Palaeogeography, Palaeoclimatology, Palaeoecology 185, 2540.Google Scholar
Matthews, I. P., Birks, H. H., Bourne, A., Brooks, S. J., Lowe, J. J., MacLeod, A. & Pyne-O'Donnell, S. D. F. 2011. New age estimates and climatostratigraphic correlations for the Borrobol and Penifiler tephras: evidence from Abernethy Forest, Scotland. Journal of Quaternary Science 26, 247–52.Google Scholar
Mayle, F. E., Lowe, J. J. & Sheldrick, C. 1997. The Late Devensian Lateglacial palaeo-environmental record from Whitrig Bog, SE Scotland. 1. Lithostratigraphy, geochemistry and palaeobotany. Boreas 26, 279–95.Google Scholar
Mayle, F. E., Bell, M., Birks, H. H., Brooks, S. J., Coope, G. R., Lowe, J. J., Sheldrick, C., Turney, C. S. M. & Walker, M. J. C. 1999. Response of lake biota and lake sedimentation processes in Britain to variations in climate during the last glacial-Holocene transition. Journal of the Geological Society, London 156, 411–23.Google Scholar
McCarroll, D., Stone, J. O., Ballantyne, C. K., Scourse, J. D., Fifield, L. K., Evans, D. J. A. & Hiemstra, J. F. 2010. Exposure-age constraints on the extent, timing and rate of retreat of the last Irish Sea ice stream. Quaternary Science Reviews 29, 1844–52.Google Scholar
McDougall, D. 2013. Glaciation style and the geomorphological record: evidence for Younger Dryas glaciers in the eastern Lake District, northwest England. Quaternary Science Reviews 73, 4858.Google Scholar
Merritt, J. W., Coope, G. R., Taylor, B. J. & Walker, M. J. C. 1990. Late Devensian organic deposits beneath till in the Teith Valley, Perthshire. Scottish Journal of Geology 25, 1524.Google Scholar
Mitchell, G. F. 1948. Late-Glacial deposits in Berwickshire. New Phytologist 47, 262–64.Google Scholar
Mitchell, G. F. 1952. Late-glacial deposits at Garscadden Main, near Glasgow. New Phytologist 50, 277–86.Google Scholar
Mithen, S., Wicks, K., Pirie, A., Riede, F., Lane, C., Banerjea, R., Cullen, V., Gittins, M. & Pankhurst, N. 2015. A Lateglacial archaeological site in the far north-west of Europe at Rubha Port an t-Selich, Isle of Islay, western Scotland: Ahrensburgian-style artefacts, absolute dating and geoarchaeology. Journal of Quaternary Science 30, 396416.Google Scholar
Moar, N. T. 1969a. Late Weichselian and Flandrian pollen diagrams from south-west Scotland. New Phytologist 68, 433–67.Google Scholar
Moar, N. T. 1969b. Two pollen diagrams from the Mainland, Orkney Islands. New Phytologist 68, 201–08.Google Scholar
Moser, K. A., MacDonald, G. M. & Smol, J. P. 1996. Applications of freshwater diatoms to geographical research. Progress in Physical Geography 20, 2152.Google Scholar
Palmer, A. P., Rose, J., Lowe, J. J. & MacLeod, A. 2010. Annually-resolved events of Younger Dryas glaciation in Lochaber (Glen Roy and Glen Spean), Western Scottish Highlands. Journal of Quaternary Science 25, 581–96.Google Scholar
Peacock, J. D., Harkness, D. D., Housley, R. A., Little, J. A. & Paul, M. M. 1989. Radiocarbon ages for a glaciomarine bed associated with the maximum of the Loch Lomond Readvance in west Benderloch, Argyll. Scottish Journal of Geology 25, 6979.Google Scholar
Pennington, W., Haworth, E. Y. Bonny, A. P. & Lishman, J. P. 1972. Lake sediments in northern Scotland. Philosophical Transactions of the Royal Society, London B264, 191294.Google Scholar
Pennington, W. & Sackin, M. J. 1975. An application of Principal Components Analysis to the zonation of two Late-Devensian profiles. New Phytologist 75, 419–53.Google Scholar
Peteet, D. M., Beh, M., Orr, C., Kurdyla, D., Nichols, J. & Guildersen, T. 2012. Delayed deglaciation or extreme Arctic conditions 21–16 cal. kyr at southeastern Laurentide Ice Sheet margin? Geophysical Research Letters 39. DOI: 10.1029/2012GL051884.Google Scholar
Pilcher, J., Bradley, R. S., Francus, P. & Anderson, L. 2005. A Holocene tephra record from the Lofoten Islands, arctic Norway. Boreas 34, 136–56.Google Scholar
Polach, H.A. 1992. Four decades of progress in 14C dating by liquid scintillation counting and spectrometry. In Taylor, R. E., Long, A. & Kra, R. (eds) Radiocarbon after Four Decades. An Interdisciplinary Perspective, 198213. New York: Springer-Verlag. 616 pp.Google Scholar
Pyne-O'Donnell, S. D. F. 2007. Three new distal tephras in sediments spanning the Last Glacial-Interglacial Transition in Scotland. Journal of Quaternary Science 22, 559–70.Google Scholar
Pyne-O'Donnell, S. D. F., Blockley, S. P. E., Turney, C. S. M. & Lowe, J. J. 2008. Distal volcanic ash layers in the Lateglacial Interstadial (GI-1): problems of stratigraphic discrimination. Quaternary Science Reviews 27, 7284.Google Scholar
Ranner, P. H., Allen, J. R. M. & Huntley, B. 2005. A new early Holocene cryptotephra from northwest Scotland. Journal of Quaternary Science 20, 201–08.Google Scholar
Rasmussen, S. O., Anderson, K. K., Svensson, A. M., Steffensen, J. P., Vinther, B. M., Clausen, H. B., Siggard-Andersen, M. L., Johnsen, S. J., Larsen, L. B., Bigler, M., Röthlisberger, R., Fischer, H., Goto-Azuma, K., Hansson, M. E. & Ruth, U. 2006. A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research 111, D06102. Doi:10,1029/2005/JD006079.Google Scholar
Rasmussen, S. O., Bigler, M., Blockley, S. P. E., Blunier, T, Buchardt, S. L., Clausen, H. B., Cvijanovic, I., Dahl-Jensen, D., Johnsen, S. J., Fischer, H., Gkinis, V., Guillevic, M., Hoek, W. Z., Lowe, J. J., Pedro, J., Popp, T., Seierstad, I. K., Steffensen, J. P., Svensson, A., Vallelonga, P., Vinther, B. M., Walker, M. J. C., Wheatley, J. J. & Winstrup, M. 2014. A stratigraphic framework for abrupt climatic changes during the last glacial period based on three synchronised Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews 106, 1428.Google Scholar
Reimer, P. J., Bard, E., Bayliss, A. Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Buck, C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffman, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M. & van der Plicht, J. 2013. INTCAL13 and Marine 13 radiocarbon age calibration curves 0–50,000 years cal. BP. Radiocarbon 55, 1869–87.Google Scholar
Robinson, M. 2004. A Late glacial and Holocene diatom record from Clettnadal, Shetland Islands, northern Scotland. Journal of Paleolimnology 31, 295319.Google Scholar
Rose, J. 1985. The Dimlington Stadial/Dimlington Chronozone: a proposal for naming the main glacial episode of the Late Devensian in Britain. Boreas 18, 225–30.Google Scholar
Rose, J. 1989. Stadial type sections in the British Quaternary. In Rose, J. & Schlüchter, C. (eds) Quaternary Type Sections: Imagination or Reality?, 4567. Rotterdam: Balkema. 208 pp.Google Scholar
Saville, A. 2005. Archaeology and the Creag nan Uamh bone caves, Assynt, Highland. Proceedings of the Society of Antiquaries of Scotland 135, 343–69.Google Scholar
Saville, A. & Ballin, T. 2009. Upper Palaeolithic evidence from Kilmelfort Cave, Argyll: a reevaluation of the lithic assemblage. Proceedings of the Society of Antiquaries of Scotland 139, 945.Google Scholar
Schlolaut, G., Marshall, M. H., Brauer, M., Nakagawa, T., Lamb, H. F., Staff, R. A., Bronk Ramsey, C., Bryant, C. L., Brock, F., Kossler, A., Tarasov, P. E, Yokoyama, Y., Tada, R., Haraguchi, T. & Suigetsu 2006 project members. 2015. An automated method for varve interpolation and its application to the Late Glacial chronology from Lake Suigetsu, Japan. Quaternary Geochronology 13, 5269.Google Scholar
Seierstad, I. K., Bigler, M., Blunier, T., Bourne, A., Brook, E., Buchardt, S. L., Buizert, C., Clausen, H. B., Cook, E., Dahl-Jensen, D., Davies, S., Guillevic, M., Johnsen, S. J., Pedersen, D. S., Popp, T. J., Rasmussen, S. O., Severinghaus, J., Svensson, A. & Vinther, B. M. 2014. Consistently dated records from the Greenland GRIP, GISP2 and NGRIP ice cores for the past 104 ka reveal regional millennial-scale isotope gradients with possible Heinrich Event imprint, Quaternary Science Reviews 106, 2946.Google Scholar
Shennan, I., Lambeck, K., Horton, B., Innes, J., Lloyd, J., McArthur, J., Purcell, T. & Rutherford, M. 2000. Late Devensian and Holocene records of relative sea-level changes in northwest Scotland and their implications for glacio-hydro-isostatic modelling. Quaternary Science Reviews 19, 1103–35.Google Scholar
Sissons, J. B. 1972. The last glaciers in part of the Southeast Grampians. Scottish Geographical Magazine 88, 168–81.Google Scholar
Sissons, J. B. 1974. A Late-glacial ice cap in the central Grampians, Scotland. Transactions of the Institute of British Geographers 62, 95114.Google Scholar
Sissons, J. B. 1978. The parallel roads of Glen Roy and adjacent glens, Scotland. Boreas 7, 229–44.Google Scholar
Sissons, J. B. 2017. The lateglacial lakes of Glens Roy, Spean and vicinity (Lochaber district, Scottish Highlands). Proceedings of the Geologists' Association 128, 3241.Google Scholar
Sissons, J. B., Lowe, J. J., Thompson, K. S. R. & Walker, M. J. C. 1973. Loch Lomond Readvance in the Grampian Highlands of Scotland. Nature 244, 7577.Google Scholar
Sissons, J. B. & Sutherland, D. G. 1976. Climatic inferences from former glaciers in the south-east Grampian Highlands, Scotland, Journal of Glaciology 17, 325–46.Google Scholar
Small, D., Rinterknecht, V., Austin, W. E. N., Fabel, D., Miguens-Rodriguez, M. & Xu, S. 2012. In situ cosmogenic exposure ages from the Isle of Skye, northwest Scotland: implications for the timing of deglaciation and readvance from 15 to 11 ka. Journal of Quaternary Science 27, 150–58.Google Scholar
Small, D., Rinterknecht, V., Austin, W. E. N., Bates, R., Benn, D. I., Scourse, J. D., Bourlès, D. L. & Hibbert, F. D. 2016. Implications of 36Cl exposure ages from Skye, northwest Scotland for the timing of ice stream deglaciation and deglacial ice dynamics. Quaternary Science Reviews 150, 130–45.Google Scholar
Smith, D. E., Barlow, N. L. M., Bradley, S. L., Firth, C. R., Hall, A. M., Jordan, J. T. & Long, D. In press. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 108, ███–███.Google Scholar
Stoker, M. S., Bradwell, T., Howe, J. A., Wilkinson, I. P. & McIntyre, K. 2009. Lateglacial ice-cap dynamics in NW Scotland: evidence from the fjords of the Summer Isles region. Quaternary Science Reviews 28, 3161–84.Google Scholar
Stuiver, M., Reimer, P. J., Bard, E., Beck, J. W., Burr, G. S., Hughen, K. A., Kromer, B., McCormac, G., van der Plicht, J. & Spurk, M. 1998. INTCAL98 radiocarbon age calibration, 24,000-0 cal. BP. Radiocarbon 40, 1041–84.Google Scholar
Stuiver, M. & Reimer, P. J. 1993. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, 215–30.Google Scholar
Sugden, D. E. 1973. Delimiting zone III glaciers in the Eastern Grampians. Scottish Geographical Magazine 89, 6364.Google Scholar
Timms, R. G. O., Matthews, I. P., Palmer, A. P., Candy, I. & Abel, L. 2017. A high-resolution tephrostratigraphy from Quoyloo Meadow, Orkney, Scotland: implications for the tephrostratigraphy of NW Europe during the Last Glacial-Interglacial Transition. Quaternary Geochronology 40, 6781.Google Scholar
Tipping, R. M. 1991a. Climatic changes in Scotland during the Devensian Late Glacial: the palynological record. In Barton, N., Roberts, A. J. & Rose, D. A. (eds) The Late Glacial in North-west Europe: Human Adaptations and Environmental Change at the End of the Pleistocene. Council for British Archaeology Research Report 77, 721. London: Council for British Archaeology. 279 pp.Google Scholar
Tipping, R. M. 1991b. The climatostratigraphic subdivision of the Devensian Lateglacial: evidence from a pollen site near Oban, western Scotland. Journal of Biogeography 18, 89101.Google Scholar
Turney, C. S. M., Beerling, D. J., Harkness, D. D., Lowe, J. J. & Scott, E. M. 1997a. Stable carbon isotope variations in northwest Europe during the last glacial-interglacial transition. Journal of Quaternary Science 12, 339–44.Google Scholar
Turney, C. S. M., Harkness, D. D. & Lowe, J. J. 1997b. The use of micro-tephra horizons to correlate Lateglacial lake sediment successions in Scotland. Journal of Quaternary Science 12, 525–31.Google Scholar
Turney, C. S. M., Harkness, D. D. & Lowe, J. J. 1998. Carbon isotope variations and chronology of the Last Glacial–Interglacial Transition (14-9 ka BP). Radiocarbon 40, 873–81.Google Scholar
Vandergoes, M. J. & Prior, C. A. 2003. The AMS dating of pollen concentrates: a methodological study of Late Quaternary sediments from South Westland, New Zealand. Radiocarbon 45, 479–91.Google Scholar
Van Asch, N. & Hoek, W. Z. 2012. The impact of summer temperature changes on vegetation development in Ireland during the Weichselian Lateglacial Interstadial. Journal of Quaternary Science 27, 441–50.Google Scholar
Vasari, Y. 1977. Radiocarbon dating of the Lateglacial and Early Flandrian vegetational succession in the Scottish Highlands and the Isle of Skye. In Gray, J. M. & Lowe, J. J. (eds) Studies in the Scottish Lateglacial Environment, 143–62. Oxford: Pergamon Press. xiii+197 pp.Google Scholar
Velle, G., Brodersen, K. P., Birks, H. J. B. & Willassen, E. 2010. Midges as quantitative temperature indicator species: Lessons for palaeoecology. The Holocene 20, 9891002.Google Scholar
Walker, M. J. C. 1984. Pollen analysis and Quaternary research in Scotland. Quaternary Science Reviews 3, 369404.Google Scholar
Walker, M. J. C. 1995. Climatic changes in Europe during the Last Glacial/Interglacial Transition. Quaternary International 28, 6376.Google Scholar
Walker, M. J. C. 2005. Quaternary Dating Methods. Chichester & New York: John Wiley. 306 pp.Google Scholar
Walker, M. J. C., Ballantyne, C. K., Lowe, J. J. & Sutherland, D. G. 1988. A reinterpretation of the Lateglacial environmental history of the Isle of Skye, Inner Hebrides, Scotland. Journal of Quaternary Science 4, 95108.Google Scholar
Walker, M. J. C., Coope, G. R. & Lowe, J. J. 1993. The Devensian (Weichselian) Lateglacial palaeoenvironmental record from Gransmoor, East Yorkshire, England. Quaternary Science Reviews 12, 659–80.Google Scholar
Walker, M. J. C., Björck, S., Cwynar, L., Johnsen, S., Knudsen, K. L., Lowe, J. J., Wohlfarth, B. & INTIMATE group. 1999. Isotopic ‘events' in the GRIP ice core: a stratotype for the Late Pleistocene. Quaternary Science Reviews 18, 1143–50.Google Scholar
Walker, M. J. C., Johnsen, S., Rasmussen, S. O., Popp, T., Steffensen, J. P., Gibbard, P., Hoek, W. Z., Lowe, J. J., Andrews, J., Björck, S., Cwynar, L. C., Hughen, K., Kershaw, P., Kromer, B., Litt, T., Lowe, D. J., Nakagawa, T., Newnham, R. & Schwander, J. 2009. Formal definition and dating of the GSSP (Global Stratotype Section and Point) for the base of the Holocene using the Greenland NGRIP ice core, and selected auxiliary records. Journal of Quaternary Science 24, 317.Google Scholar
Walker, M. J. C. & Lowe, J. J. 1990. Reconstructing the environmental history of the Last Glacial-Interglacial Transition: evidence from the Isle of Skye, Inner Hebrides, Scotland. Quaternary Science Reviews 9, 1549.Google Scholar
Walker, M. J. C. & Lowe, J. J. 1997. Vegetation and climate in Scotland, 13,000 to 7000 radiocarbon years ago. In Gordon, J. E. (ed.) Reflections on the Ice Age in Scotland: an Update on Quaternary Studies, 105–15. Glasgow: Scottish Association of Geography Teachers and Scottish Natural Heritage. 188 pp.Google Scholar
Ward, T. & Saville, A. 2010. Excavating Scotland's first people. Current Archaeology 243, 1823.Google Scholar
Wastegård, S. 2002. Early to middle Holocene silicic tephra horizons from the Katla volcanic system, Iceland: new results from the Faroe Islands. Journal of Quaternary Science 17, 723–30.Google Scholar
Whittington, G., Fallick, A. E. & Edwards, K. J. 1996. Stable oxygen isotope and pollen records from eastern Scotland and a consideration of Late-glacial and early Holocene climate change for Europe. Journal of Quaternary Science 11, 327–40.Google Scholar
Whittington, G., Buckland, P., Edwards, K. J., Greenwood, M., Hall, A. M. & Robinson, M. 2003. Multiproxy Devensian Late-glacial and Holocene environmental records at an Atlantic coastal site in Shetland. Journal of Quaternary Science 18, 151–68.Google Scholar
Whittington, G., Edwards, K. J., Zanchetta, G., Keene, D. H., Bunting, M. J., Fallick, A. E. & Bryant, C. L. 2015. Lateglacial and early Holocene climates of the Atlantic margins of Europe: Stable isotope, mollusc and pollen records from Orkney, Scotland. Quaternary Science Reviews 122,112–30.Google Scholar
Young, J. A. T. 1974. Ice wastage in Glenmore, upper Spey Valley, Inverness-shire. Scottish Journal of Geology 10, 147–57.Google Scholar
Zolitschka, B., Francus, P., Ojala, A. E. K. & Schimmelmann, A. 2015. Varves in lake sediments – a review. Quaternary Science Reviews 117, 14.Google Scholar