Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T23:31:35.296Z Has data issue: false hasContentIssue false

Crystallisation of anhydrite-bearing magmas

Published online by Cambridge University Press:  03 November 2011

Leslie L. Baker
Affiliation:
Leslie L. Baker and Malcolm J. Rutherford, Department of Geological Sciences, Brown University, Providence, RI 02912, U.S.A.
Malcolm J. Rutherford
Affiliation:
Leslie L. Baker and Malcolm J. Rutherford, Department of Geological Sciences, Brown University, Providence, RI 02912, U.S.A.

Abstract:

Anhydrite has been identified as a phenocrystic phase in some silicic volcanic magmas, but it is not commonly described in plutonic rocks. Anhydrite-bearing magmas tend to form in arc environments and to contain hydrous, low-temperature, oxidised mineral assemblages. Phenocrystic anhydrite coexists with sulphur-enriched apatite and sometimes with pyrrhotite, in silicate melt that contains from 50 ppm to 1 wt% S, depending on temperature and conditions. Vapour coexisting with anhydrite- and water-saturated magma may contain from a few tenths of a mole per cent to a few mole per cent sulphur gases (SO2 and H2S), with the exact composition and gas speciation depending on temperature and oxygen fugacity. Samples of one anhydrite-bearing magma, the 1991 Pinatubo dacite, have been experimentally crystallised to determine whether the magma retains its characteristic sulphur-rich mineral phases during solidification. Results show that anhydrite and sulphur-rich apatite are retained throughout crystallisation and vapour phase evolution. This suggests that anhydrite-bearing intrusive equivalents of the Pinatubo dacite should be present in arc plutonic complexes.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arculus, R. J., Johnson, R. W., Chappell, B. W., McKee, C. O.&Sakai, H. 1983. Ophiolite-contaminated andesites, trachybasalts, and cognate inclusions of Mount Lamington, Papua New Guinea: anhydrite-amphibole-bearing lavas and the 1951 cumulodome. J VOLCANOL GEOTHERM RES 18, 215–47.CrossRefGoogle Scholar
Baker, L.&Rutherford, M. J. 1992. Anhydrite breakdown as a possible source of excess sulfur in the 1991 Mount Pinatubo eruption. EOS, TRANS AM GEOPHYS UNION 73, 625.Google Scholar
Baker, L.&Rutherford, M. J.Sulfur diffusion in rhyolite melts. CONTRIB MINERAL PETROL 123, 335–44.CrossRefGoogle Scholar
Bernard, A., Demaiffe, D., Mattielli, N.&Punongbayan, R. S. 1991. Anhydrite-bearing pumices from Mount Pinatubo: further evidence for the existence of sulphur-rich silicic magmas. NATURE 354, 139–40.CrossRefGoogle Scholar
Bluth, G. J., Doiron, S. D., Schnetzler, C.Krueger, A. J.&Walter, L. S. 1992. Global tracking of the SO2 clouds from the June, 1991 Mount Pinatubo eruptions. GEOPHYS RES LETT 19, 151–54.CrossRefGoogle Scholar
Carroll, M.&Rutherford, M. J. 1985. Sulfide and sulfate saturation in hydrous silicate melts. Proceedings of 15th Lunar and Planetary Science Conference. J GEOPHYS RES 90, C60112.CrossRefGoogle Scholar
Carroll, M.&Rutherford, M. J. 1987. The stability of igneous anhydrite: experimental results and implications for sulfur behavior in the 1982 El Chichón trachyandesite and other evolved magmas. J PETROL 28, 781801.CrossRefGoogle Scholar
Carroll, M.&Rutherford, M. J. 1988. Sulfur speciation in hydrous experimental glasses of varying oxidation state: results from measured wavelength shifts of sulfur x-rays. AM MINERAL 73, 845–9.Google Scholar
Devine, J. D., Sigurdsson, H., Davis, A. N.&Self, S. 1984. Estimates of sulfur and chlorine yield to the atmosphere from volcanic eruptions and potential climate effects. J GEOPHYS RES 89, 6309–25.CrossRefGoogle Scholar
Devine, J. D., Gardner, J. E., Brach, H. P., Layne, G. D.&Rutherford, M. J. 1995. Comparison of microanalytical methods for estimation of H2O contents of silicic volcanic glasses. AM MINERAL 80, 319–28.CrossRefGoogle Scholar
Drexler, J. W.&Munoz, J. L. 1985. Highly oxidized, pyrrhotite-anhydrite-bearing silicic Ag-Cu-Bi-Pb-Au-W District, Peru: physiochemical conditions of a productive magma. In: Canadian Institute of Mining Conference on Granite-related Mineral Deposits, Extended Abstracts, 87100.Google Scholar
Gerlach, T. M.&McGee, K. A. 1994. Total sulfur dioxide emissions and pre-eruption vapor-saturated magma at Mount St. Helens, 1980–1988. GEOPHYS RES LETT 21, 2833–6.CrossRefGoogle Scholar
Gerlach, T. M., Westrich, H. R., Casavedall, T. J.&Finnegan, D. L. 1994. Vapor saturation and accumulation in magmas of the 1989–1990 eruption of Redoubt volcano, Alaska. J VOLCANOL GEOTHERM RES 62, 317–37.CrossRefGoogle Scholar
Gerlach, T. M., Westrich, H. R.&Symonds, R. B. 1996. Pre-eruption vapor in magma of the climactic Mount Pinatubo eruption: source of the giant stratospheric sulfur dioxide cloud. In: Punongbayan, R. S.&Newhall, C. G. (eds) The 1991 eruptions of Pinatubo Volcano, Philippines, 415–33. The Philippine Institute of Volcanology & Seismology and The Unversity of Washington Press.Google Scholar
Geschwind, C. -H.&Rutherford, M. J. 1992. Cummingtonite and the evolution of the Mount St. Helens magma system: an experimental study. GEOLOGY 20, 1011–4.2.3.CO;2>CrossRefGoogle Scholar
Hattori, K. 1993. High-sulfur magma, a product of fluid discharge from underlying mafic magma: evidence from Mount Pinatubo, Philippines. GEOLOGY 21, 1083–6.2.3.CO;2>CrossRefGoogle Scholar
Haughton, D., Roedder, P. L.&Skinner, B. J. 1974. Solubility of sulfur in mafic magmas. ECON GEOL 69, 451–67.CrossRefGoogle Scholar
Holloway, J. R. 1987. Igneous fluids. In: Carmichael, I. S. E.&Eugster, H. P. (eds) Thermodynamic modeling of geological materials: minerals, fluids and melts. REV MIN 17, 211–33.Google Scholar
Katsura, T.&Nagashima, S. 1974. Solubility of sulfur in some magmas at 1 atm pressure. GEOCHIM COSMOCHIM ACTA 38, 517–31.CrossRefGoogle Scholar
Luhr, J. F. 1990. Experimental phase relations of water- and sulfur-saturated arc magmas and the 1982 eruptions of El Chichón volcano. J PETROL 31, 1071–114.CrossRefGoogle Scholar
Luhr, J. F., Carmichael, I. S. E.&Varekamp, J. C. 1984. The 1982 eruptions of El Chichón volcano, Chiapas, Mexico: mineralogy and petrology of the anhydrite-bearing pumices. J VOLCANOL GEOTHERM RES 23, 69108.CrossRefGoogle Scholar
McKenzie, W. F.&Helgeson, H. C. 1985. Phase relations among silicates, copper iron sulfides, and aqueous solutions at magmatic temperatures. ECON GEOL 80, 1965–73.CrossRefGoogle Scholar
McKibben, M. A. & Eldridge, C. S. 1995. Sulfur isotopic systematics of the June 1991 eruptions of Mount Pinatubo: a SHRIMP ion microprobe study. EOS, TRANS AM GEOPHYS UNION 74, 668.Google Scholar
Merzbacher, C.&Eggler, D. H. 1984. A magmatic geohydrometer: application to Mount St. Helens and other dacitic magmas. GEOLOGY 12, 587–90.2.0.CO;2>CrossRefGoogle Scholar
Nagashima, S.&Katsura, T. 1973. The solubility of sulfur in Na2O-SiO2 melts under various oxygen partial pressures at 1100, 1250 and 1300°C. BULL CHEM SOC JPN 46, 3099–103.CrossRefGoogle Scholar
Nielsen, C. H.&Sigurdsson, H. 1981. Quantitative methods of electron microprobe analysis of sodium in natural and synthetic glasses. AM MINERAL 66, 547–52.Google Scholar
Nilsson, K.&Peach, C. L. 1993. Sulfur speciation, oxidation state, and sulfur concentration in backarc magmas. GEOCHIM COSMOCHIM ACTA 57, 3807–13.CrossRefGoogle Scholar
Pallister, J. S., Hoblitt, R. P.&Reyes, A. G. 1992. A basalt trigger for the 1991 eruptions of Pinatubo volcano? NATURE 356, 426–8.CrossRefGoogle Scholar
Pallister, J. S., Meeker, G. P.&Luhr, J. F. 1995. Recognizing ancient sulfur-rich eruptions: lessons from Pinatubo, El Chichón, and Mount St. Helens. IUGG XXI GENERAL ASSEMBLY, ABSTR A279.Google Scholar
Pallister, J. S., Hoblitt, R. P., Meeker, G. P., Knight, R. J.&Sierns, D. F. 1996. Magma mixing at Mount Pinatubo: petrographic and chemical evidence from the 1991 deposits. In: Punongbayan, R. S.&Newhall, C. G. (eds) The 1991 eruptions of Pinatubo Volcano, Philippines, 687731. The Philippine Institute of Volcanology & Seismology and The University of Washington Press.Google Scholar
Robie, R. A., Hemingway, B. S.&Fisher, J. R. 1978. Thermodynamic properties of minerals and related substances at 298·15 K and 1 bar (105 Pascals) pressure and at higher temperatures. US GEOL SURV SPEC PAP 1452.Google Scholar
Rouse, R. C.&Dunn, P. J. 1982. A contribution to the crystal chemistry of ellestadite and the silicate sulfate apatites. AM MINERAL 67, 90–6.Google Scholar
Rutherford, M. J.&Devine, J. D. 1996. Pre-eruption pressure-temperature conditions and volatiles in the 1991 dacitic magma of Mount Pinatubo. In: Punongbayan, R. S.&Newhall, C. G. (eds) The 1991 eruptions of Pinatubo Volcano, Philippines, 751–61. The Philippine Institute of Volcanology & Seismology and The University of Washington Press.Google Scholar
Rutherford, M. J.&Hill, P. 1993. Magma ascent rates from amphibole breakdown: an experimental study applied to the 1980–1986 Mount St. Helens eruptions. J GEOPHYS RES 98, 19,667–85.CrossRefGoogle Scholar
Rye, R. O., Luhr, J. F.&Wasserman, M. D. 1984. Sulfur and oxygen isotopic systematics of the 1982 eruptions of El Chichón volcano, Chiapas, Mexico. J VOLCANOC GEOTHERM RES 23, 109–23.CrossRefGoogle Scholar
Ryzhenko, B. N.&Volkov, V. P. 1971. Fugacity coefficients of some gases in a broad range of temperatures and pressures. GEOCHEM INT 8, 468–81.Google Scholar
Sigurdsson, H. 1990. Assessment of the atmospheric impact of volcanic eruptions. GEOL SOC AM SPEC PAP 247, 99110.Google Scholar
Varekamp, J. C., Luhr, J. F.&Prestegaard, K. L. 1984. The 1982 eruptions of El Chichón volcano (Chiapas, Mexico): character of the eruptions, ash-fall deposits and gasphase. J VOLCANOL GEOTHERM RES 23, 3968.CrossRefGoogle Scholar
Wallace, P. J.&Carmichael, I. S. E. 1992. Sulfur in basaltic magmas. GEOCHIM COSMOCHIM ACTA 56, 1863–74.CrossRefGoogle Scholar
Westrich, H. R.&Gerlach, T. M. 1992. Magmatic gas source for the stratospheric SO2 cloud from the June 15, 1991 eruption of Pinatubo volcano. GEOLOGY 20, 867–70.2.3.CO;2>CrossRefGoogle Scholar