Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T22:21:52.189Z Has data issue: false hasContentIssue false

Carbon dioxide drawdown by Devonian lavas

Published online by Cambridge University Press:  14 July 2014

John Parnell
Affiliation:
School of Geosciences, University of Aberdeen, Aberdeen AB24 3UE, UK. Email: j.parnell@abdn.ac.uk
Kirsty Macleod
Affiliation:
School of Geosciences, University of Aberdeen, Aberdeen AB24 3UE, UK. Email: j.parnell@abdn.ac.uk
Malcolm J. Hole
Affiliation:
School of Geosciences, University of Aberdeen, Aberdeen AB24 3UE, UK. Email: j.parnell@abdn.ac.uk

Abstract

Lower Devonian volcanic rocks in the northern British Isles, especially Scotland, show extensive evidence for contemporaneous subaerial weathering. Basalt and andesite lavas were altered to red iron oxides, commonly accompanied by calcite. Measurement of carbonate contents in 104 samples over a region of 100,000 km2 show an average of 13% calcite. Weighted for outcrop thickness, this represents an estimated 7.3×1016 moles CO2, extracted from surface waters and ultimately the atmosphere. The time frame for this drawdown is difficult to constrain, but complete weathering of a one-metre unit over 1000 years would involve CO2 consumption comparable with the highest rates determined in modern basaltic watersheds. These data demonstrate that volcanic activity can be a major sink, as well as a source for CO2, and provide a data set for modelling of CO2 flux during episodes of volcanic activity in the geological record. The high capacity of the Devonian lavas for CO2 drawdown emphasises the potential of basalts for CO2 sequestration.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

6. References

Alfredsson, H. A., Hardarson, B. S., Franzson, H. & Gislason, S. R. 2008. CO2 sequestration in basaltic rock at the Hellisheidi site in SW Iceland: stratigraphy and chemical composition of the rocks at the injection site. Mineralogical Magazine 72, 15.Google Scholar
Baines, S. J. & Worden, R. H. 2004. The long-term fate of CO2 in the subsurface: natural analogues for CO2 storage. Geological Society, London, Special Publications 233, 5985.Google Scholar
Berner, R. A. 2006. Inclusion of the weathering of volcanic rocks in the GEOCARBSULF model. American Journal of Science 306, 295302.Google Scholar
Browne, M. A. E. 1999. Balmerino to Wormit. In Stephenson, D., Bevins, R. E., Millward, D., Highton, A. J., Parsons, I., Stone, P. & Wadsworth, W. J. (eds) Caledonian Igneous Rocks of Great Britain. Geological Conservation Review 17, 531–34. Peterborough: Joint Nature Conservation Committee.Google Scholar
Browne, M. A. E., Smith, R. A. & Aitken, A. M. 2002. Stratigraphical Framework for the Devonian (Old Red Sandstone) rocks of Scotland south of a line from Fort William to Aberdeen. British Geological Survey Research Report RR/01/04.Google Scholar
Carruthers, R. G., Burnett, G. A. & Anderson, W. 1932. The Geology of the Cheviot Hills. Memoir of the Geological Survey of Great Britain. London: HMSO.Google Scholar
Charlesworth, H. A. K. 1960. The Old Red Sandstone of the Curlew Mountains inlier. Proceedings of the Royal Irish Academy, Sect. B 61, 5158.Google Scholar
Cocks, L. R. M. & Torsvik, T. H. 2011. The Palaeozoic geography of Laurentia and western Laurissa: A stable craton with mobile margins. Earth-Science Reviews 106, 151.Google Scholar
Dessert, C., Dupré, B., François, L. M., Schott, J., Gaillardet, J., Chakrapani, G. J. & Bajpai, S. 2001. Erosion of Deccan traps determined by river geochemistry: impact on the global climate and the 87Sr/86Sr ratio of seawater. Earth and Planetary Science Letters 188, 459–74.Google Scholar
Dessert, C., Dupré, B., Gaillardet, J., François, L. M. & Allègre, C. J. 2003. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chemical Geology 202, 257–73.Google Scholar
Fallick, A. E., Jocelyn, J., Donnelly, T., Guy, M. & Behan, C. 1985. Origin of agates in volcanic rocks in Scotland. Nature 313, 672–74.Google Scholar
Frakes, L. A., Francis, J. E. & Syktus, J. I. 1992. Climate Modes of the Phanerozoic. Cambridge, UK: Cambridge University Press.Google Scholar
Gates, O. & Moench, R. H. 1981. Bimodal Silurian and Lower Devonian volcanic rock assemblages in the Machias–Eastport area, Maine. U.S. Geological Survey Professional Paper 1184.Google Scholar
Gislason, S. R., Wolff-Boenisch, D., Stefansson, A., Oelkers, E. H., Gunnlaugsson, E., Sigurdardottir, H., Sigfusson, B., Broecker, W. S., Matter, J. M., Stute, M., Axelsson, G. & Fridriksson, T. 2010. Mineral sequestration of carbon dioxide in basalt: A pre-injection overview of the CarbFix project. International Journal of Greenhouse Gas Control 4, 537–45.Google Scholar
Gorman, P. J., Kerrick, D. M. & Connolly, J. A. D. 2006. Modeling open system metamorphic decarbonation of subducting slabs. Geochemistry, Geophysics, Geosystems 7, Q04007, doi:10.1029/2005GC001125.Google Scholar
Gradstein, F. M., Ogg, J. G. & Smith, A. G. 2005. A Geological Time Scale 2004. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Graham, J. R. & Clayton, G. 1988. Devonian rocks in Ireland and their relation to adjacent regions. In McMillan, N. J., Embry, A. F. & Glass, D.J. (eds) The Devonian of the World, volume 1. Canadian Society of Petroleum Geologists Memoir 14, 325–40.Google Scholar
Groome, D. R. & Hall, A. 1974. The geochemistry of the Devonian lavas of the northern Lorne Plateau, Scotland. Mineralogical Magazine 39, 621–40.Google Scholar
Hilton, D. R., Fischer, T. P. & Marty, B. 2002. Noble gases and volatile recycling in subduction zones. In Porcelli, D., Ballentine, C. & Weiler, R. (eds) Noble Gases in Geochemistry and Cosmochemistry. Reviews in Mineralogy and Geochemistry 47, 319–70. Washington, D.C.: Mineralogical Association of America.CrossRefGoogle Scholar
Hole, M., Jolley, D., Hartley, A., Leleu, S., John, N. & Ball, M. 2013. Lava–sediment interactions in an Old Red Sandstone basin, NE Scotland. Journal of the Geological Society, London 170, 641–55.Google Scholar
James, E. R., Manga, M. & Rose, T. P. 1999. CO2 degassing in the Oregon Cascades. Geology 27, 823–26.Google Scholar
Joachimski, M. M., Breisig, S., Buggisch, W., Talent, J.A., Mawson, R., Gereke, M., Morrow, J. R., Day, J. & Weddige, K. 2009. Devonian climate and reef evolution: Insights from oxygen isotopes in apatite. Earth and Planetary Science Letters 284, 599609.Google Scholar
Jolley, D. W., Passey, S. R., Hole, M. J. & Millett, J. 2012. Basaltic melt fractionation drives plant ecosystem dynamics. Journal of the Geological Society, London 169, 703–11.Google Scholar
Kokelaar, B. P. 1982. Fluidization of wet sediments during the emplacement and cooling of various igneous bodies. Journal of the Geological Society, London 139, 2133.Google Scholar
Kulkarni, H., Deolankar, S. B., Lalwani, A., Joseph, B. & Pawar, S. 2000. Hydrogeological framework of the Deccan Basalt groundwater system. Hydrogeology Journal 8, 368–78.Google Scholar
Mangan, M. T., Wright, T. L., Swanson, D. A., Byerly, G. R. 1989. Correlation of Miocene flows of the Columbia River basalt group from the central Columbia River plateau to the coast of Oregon and Washington. Geological Society of America Special Paper 239, 113–29.Google Scholar
Mark, D. F., Rice, C. M., Fallick, A. E., Trewin, N. H., Lee, M. R., Boyce, A. & Lee, J. K. W. 2011. 40Ar/39Ar dating of hydrothermal activity, biota and gold mineralization in the Rhynie hot-spring system, Aberdeenshire, Scotland. Geochimica et Cosmochimica Acta 75, 555–69.Google Scholar
Matter, J. M., Takahashi, T. & Goldberg, D. 2007. Experimental evaluation on in situ CO2-water-rock reactions during CO2 injection in basaltic rocks: Implications for geological CO2 sequestration. Geochemistry Geophysics Geosystems 8. doi:10.1029/2006GC001427.Google Scholar
McGrail, B. P., Schaef, H. T., Ho, A. M., Chien, Y.-J., Dooley, J. J. & Davidson, C. L. 2006. Potential for carbon dioxide sequestration in flood basalts. Journal of Geophysical Research 111. doi:10.1029/2005JB004169, 2006.Google Scholar
Moore, I. & Kokelaar, P. 1998. Tectonically controlled piecemeal caldera collapse: a case study of Glencoe volcano, Scotland. Geological Society of America Bulletin 110, 1448–66.2.3.CO;2>CrossRefGoogle Scholar
Mykura, W. 1960. The Lower Old Red Sandstone igneous rocks of the Pentland Hills. Bulletin of the Geological Survey of Great Britain 16, 131–55.Google Scholar
Oelkers, E. H., Gislason, S. R. & Matter, J. 2008. Mineral carbonation of CO2 . Elements 4, 333–37.Google Scholar
Phillips, E. 2007. Petrology and provenance of the Siluro–Devonian (Old Red Sandstone facies) sedimentary rocks of the Midland Valley, Scotland. British Geological Survey Geology and Landscape Northern Britain Programme Report IR/07/040.Google Scholar
Prasad, P. S. R., Sarma, D. S., Sudhakar, L., Basavaraju, U., Singh, R. S., Begum, Z., Archana, K. B., Chavan, C. D. & Charan, S. N. 2009. Geological sequestration of carbon dioxide in Deccan basalts: preliminary laboratory study. Current Science 96, 288–91.Google Scholar
Reidel, S. 2005. A lava flow without a source: The Cohassett flow and its compositional components, Sentinel Bluffs Member, Columbia River Basalt Group. Journal of Geology 113, 121.Google Scholar
Richardson, J. B., Ford, J. H. & Parker, F. 1984. Miospores, correlation and age of some Scottish Lower Old Red Sandstone sediments of the Strathmore region (Fife and Angus). Journal of Micropalaeontology 3, 109–24.CrossRefGoogle Scholar
Ross, M. E. 1989. Stratigraphic relationships of subaerial, invasive, and intracanyon flows of Saddle Mountains Basalt in the Troy basin, Oregon and Washington. Geological Society of America Special Paper 239, 131–42.Google Scholar
Russell, W. J. & Rodgers, K. A. 1977. Waters of the Western Springs catchment, Auckland. New Zealand Journal of Marine and Freshwater Research 11, 713–28.Google Scholar
Schaef, H. T., McGrail, B. P. & Owen, A. T. 2010. Carbonate mineralization of volcanic province basalts. International Journal of Greenhouse Gas Control 4, 249–61.Google Scholar
Schaef, H. T. & McGrail, B. P. 2009. Dissolution of Columbia River Basalt under mildly acidic conditions as a function of temperature: Experimental results relevant to the geological sequestration of carbon dioxide. Applied Geochemistry 24, 980–87.Google Scholar
Self, S., Keszthelyi, L. & Thordarson, Th. 1998. The importance of Pāhoehoe. Annual Reviews in Earth and Planetary Science 26, 81110.Google Scholar
Simon, J. B. 1984a. Provenance and depositional history of the Lower Old Red Sandstone of Northeast Antrim. Irish Journal of Earth Sciences 6, 113.Google Scholar
Simon, J. B. 1984b. Sedimentation and tectonic setting of the Lower Old Red Sandstone of the Fintona and Curlew Mountain districts. Irish Journal of Earth Sciences 6, 213–28.Google Scholar
Skilling, I. P., White, J. D. L. & Mcphie, J. 2002. Peperite: a review of magma-sediment mingling. Journal of Volcanology and Geothermal Research 114, 117.Google Scholar
Smith, R. A. 1995. The Siluro-Devonian evolution of the southern Midland Valley of Scotland. Geological Magazine 132, 503–13.CrossRefGoogle Scholar
Smith, R. A. 1999. Black Rock to East Comb. In Stephenson, D., Bevins, R. E., Millward, D., Highton, A. J., Parsons, I., Stone, P. & Wadsworth, W. J. (eds) Caledonian Igneous Rocks of Great Britain. Geological Conservation Review 17, 528–31. Peterborough: Joint Nature Conservation Committee.Google Scholar
Stephenson, D. 1999. Pettico Wick to St. Abb's Harbour. In Stephenson, D., Bevins, R. E., Millward, D., Highton, A. J., Parsons, I., Stone, P. & Wadsworth, W. J. (eds) Caledonian Igneous Rocks of Great Britain. Geological Conservation Review 17, 552–56. Peterborough: Joint Nature Conservation Committee.Google Scholar
Stephenson, M. H. & Mitchell, W. I. 2002. Definitive new palynological evidence for the early Devonian age of the Fintona Group, Northern Ireland. Irish Journal of Earth Sciences 20, 4152.Google Scholar
Storetvedt, K. M., Abranches, M. C., Petersen, N., Hummervoll, R., Deutsch, E. R. & Murthy, G. S. 1992. Structure of remanent magnetization and magnetic mineralogy of the Cheviot lavas (Lower Devonian), northeast England. Physics of the Earth and Planetary Interiors 72, 2137.CrossRefGoogle Scholar
Thirlwall, M. F. 1988. Wenlock to mid-Devonian volcanism of the Caledonian–Appalachian orogen. In Harris, A. L. & Fettes, D. J. (eds) The Caledonian–Appalachian Orogen. Geological Society, London, Special Publication 38, 415–28.Google Scholar
Tollefson, J. 2013. Pilot projects bury carbon dioxide in basalt. Nature 500, 18.Google Scholar
Trench, A. & Haughton, P. D. W. 1990. Palaeomagnetic and geochemical evaluation of a terrane-linking ignimbrite; evidence for the relative position of the Grampian and Midland Valley terranes in late Silurian time. Geological Magazine 127, 241–57.Google Scholar
Trewin, N. H. & Rice, C. M. 1992. Stratigraphy and sedimentology of the Devonian Rhynie chert locality. Scottish Journal of Geology 28, 3747.Google Scholar
Trewin, N. H. & Thirlwall, M. F. 2002. Old Red Sandstone. In Trewin, N. H. (ed.) The Geology of Scotland, 213–49. London: The Geological Society.Google Scholar
United States Geological Survey. 2010. Volcanic Gases and Their Effects. http://volcanoes.usgs.gov/hazards/gas/index.php Google Scholar
Varekamp, J. C. & Thomas, E. 1998. Volcanic and anthropogenic contributions to global weathering budgets. Journal of Geochemical Exploration 62, 149–59.Google Scholar
Wellman, C. H. 1994. Palynology of the ‘Lower Old Red Sandstone’ at Glen Coe, Scotland. Geological Magazine 131, 563–66.Google Scholar
Wellman, C. H. 2006. Spore assemblages from the Lower Devonian ‘Lower Old Red Sandstone’ of the Rhynie outlier, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 97, 167211.Google Scholar
Wilson, M. J. 1971. Clay mineralogy of the Old Red Sandstone (Devonian) of Scotland. Journal of Sedimentary Petrology 41, 9951007.Google Scholar