Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T17:57:05.680Z Has data issue: false hasContentIssue false

An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677

Published online by Cambridge University Press:  03 November 2011

N. J. Shackleton
Affiliation:
Subdepartment of Quaternary Research, The Godwin Laboratory, Free School Lane, Cambridge CB2 3RS, U.K.
A. Berger
Affiliation:
Institut d'Astronomie et de Géophysique G. Lemaitre, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.
W. R. Peltier
Affiliation:
Department of Physics, University of Tornoto, Ontario M5S 1A7, Canada.

Abstract

Ocean Drilling Program (ODP) Site 677 provided excellent material for high resolution stable isotope analysis of both benthonic and planktonic foraminifera through the entire Pleistocene and upper Pliocene. The oxygen isotope record is readily correlated with the SPECMAP stack (Imbrie et al. 1984) and with the record from DSDP 607 (Ruddiman et al. 1986) but a significantly better match with orbital models is obtained by departing from the timescale proposed by these authors below Stage 16 (620 000 years). It is the stronger contribution from the precession signal in the record from ODP Site 677 that provides the basis for the revised timescale. Our proposed modification to the timescale would imply that the currently adopted radiometric dates for the Matuyama–Brunhes boundary, the Jaramillo and Olduvai Subchrons and the Gauss–Matuyama boundary underestimate their true astronomical ages by between 5 and 7%.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexandrovich, J. 1989. Radiolarian Biostratigraphy of Site 677, Eastern Equatorial Pacific. Late Miocene through Pleistocene. PROC ODP, SCI RESULTS 111, 245–62.Google Scholar
Alexandrovich, J. & Hays, J. D. 1989. High-resolution stratigraphic correlation of ODP Leg 111 Holes 677A and 677B and DSDP Leg 69 Hole 504. PROC ODP SCI RESULTS 111, 263–85.Google Scholar
Backman, J. & Shackleton, N. J. 1983. Quantitative biochronology of Pliocene and early Pleistocene nannofossils from the Atlantic, Indian and Pacific oceans. MAR MICROPALEONTOL 8, 141–70.CrossRefGoogle Scholar
Becker, K., Sakai, H. et al. 1988. PROC ODP INIT REPTS (Pt A), 111Google Scholar
Berger, A. 1976. Obliquity and precession for the last 5,000,000 years. ASTRON & ASTROPHYS 51, 127–35.Google Scholar
Berger, A. 1978. Long term variations of daily insolation and Quaternary Climatic changes. J ATOMS SCI 35, 2362–7.2.0.CO;2>CrossRefGoogle Scholar
Berger, A. 1984. Accuracy and frequency stability of the Earth's orbital elements during the Quaternary. In Berger, A., Imbrie, J., Hays, J. D., Kukla, G. & Saltzman, B. (eds) Milankovitch and Climate, pp. 339. Hingham, Mass.: D. Reidel.CrossRefGoogle Scholar
Berger, A. 1988. Milankovitch theory and climate. REVS GEOPHYS 26, 624–57.CrossRefGoogle Scholar
Berger, A. 1989. THIRD INTERNATIONAL CONFERENCE ON PALEO-OCEANOGRAPHY, 16.Google Scholar
Berger, A. & Loutre, M. F. 1988. New insolation values for the climate of the last 10 million years. Scientific Report 1988/13. Institut d'Astronomie et de Geophysique Georges Lemaitre. Universite Catholique de Louvain-la-Neuve.Google Scholar
Berggren, W. A., Kent, D. V. & Flynn, J. J. 1985. Jurassic to Paleogene: Part 2, Paleogene geochronology and chronostratigraphy. In Snelling, N. J. (ed.) The Chronology of the Geological Record, GEOL SOC MEM 10, 141–95.CrossRefGoogle Scholar
Broecker, W. S. 1966. Absolute dating and the astronomical theory of glaciation. SCIENCE 151, 299304.CrossRefGoogle ScholarPubMed
Broecker, W. S., Thurber, D. L., Goddard, J., Ku, T. L., Matthews, R. K. & Mesolella, K. J. 1968. Milankovitch hypothesis supported by precise dating of coral reefs and deep-sea sediments. SCIENCE 159, 297300.CrossRefGoogle ScholarPubMed
Emiliani, C. 1958. Paleotemperature analysis of core 280 and Pleistocene correlations. J GEOL 66, 264–75.CrossRefGoogle Scholar
Emiliani, C. 1955. Pleistocene temperatures. J GEOL 63, 538–78.CrossRefGoogle Scholar
Hays, J. D., Imbrie, J. & Shackleton, N. J. 1976. Variations in the earth's orbit: pacemaker of the ice ages. SCIENCE 194, 1121–31.CrossRefGoogle ScholarPubMed
Hilgen, F. J. & Langereis, C. G. 1989. Periodicities of CaCO3 cycles in the Pliocene of Sicily: discrepancies with the quasi-periodicities of the Earth's orbital cycles. TERRA NOVA 1, 409415.CrossRefGoogle Scholar
Imbrie, J. & Imbrie, J. Z. 1980. Modeling the climatic response to orbital variations. SCIENCE 207, 943–53.CrossRefGoogle ScholarPubMed
Imbrie, J., Hays, J. D., Martinson, D. G., Mclntyre, A., Mix, A., Morley, J. J., Pisias, N. G.Prell, W. & Shackleton, N. J. 1984. The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record. In Berger, A., Imbrie, J., Hays, J. D., Kukla, G. & Saltzman, B.Milankovitch and Climate, pp. 269305. Hingham, Mass.: D. Reidel.Google Scholar
Jenkins, G. M. & Watts, D. G. 1968. Spectral Analysis and its Applications. San Francisco: Holden Day.Google Scholar
Johnson, R. G. 1982. Brunhes–Matuyama magnetic reversal dated at 790,000 yr B.P. by marine-astronomical correlations. QUATERN RES 17, 135–47.CrossRefGoogle Scholar
Maniken, E. A. & Grommé, C. S. 1982. Paleomagnetic data from the Coso Range, California and current status of the Cobb Mountain normal Geomagnetic Polarity Event. GEOPHYS RES LETT 9, 1279–82.CrossRefGoogle Scholar
Martinson, D. G., Pisias, N., Hays, J. D., Imbrie, J., Moore, T. C. & Shackleton, N. J. 1987. Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300,000-year chronostratigraphy. QUATERN RES 27, 130.CrossRefGoogle Scholar
Milankovitch, M. 1930. Mathematische Klimalehre und astronomische Theorie der Klimaschwankungen. In Köppen, W. & Geiger, R. (eds) Handbuch der Klimatologie, I (A), pp. 1176. Berlin: Gebrüder Borntraeger.Google Scholar
Morley, J. J. & Shackleton, N. J. 1984. The effect of accumulation rate on the spectrum of geologic time series: evidence from two South Atlantic sediment cores. In Berger, A. L. et al. (eds) Milankovitch and Climate, Part 1, pp. 467480. Hingham, Mass.: D. Reidel.Google Scholar
Nelson, C. S., Hendy, C. H., Cuthbertson, A. M. & Jarrett, G. R. 1986. Late Quaternary carbonate and isotope stratigraphy, subantarctic Site 594, southwest Pacific. INITIAL REPORTS OF THE DEEP SEA DRILLING PROJECT 90, 1425–36.Google Scholar
Ninkovitch, D. & Shackleton, N. J. 1975. Distribution, stratigraphic position and age of ash layer “L”, in the Panama Basin region. EARTH AND PLANET SCI LETT 27, 2034.CrossRefGoogle Scholar
Peng, T.-S., Broecker, W. S., Kipphut, G. & Shackleton, N. J. 1977. The relation of sediment mixing to the distortion of climatic records in the deep sea sediments. In Andersen, N. R. & Malahoff, A. (eds) The Fate of Fossil Fuel CO2 in the Oceans. New York: Plenum.Google Scholar
Pisias, N., Martinson, D. G., Moore, T. C. Jr., Shackleton, N. J., Prell, W., Hays, J. D. & Boden, G. 1984. High resolution stratigraphic correlations of benthic oxygen isotopic records spanning the last 300,000 years. MAR GEOL 56, 119–36.CrossRefGoogle Scholar
Prell, W., Imbrie, J., Martinson, D. G., Morley, J., Pisias, N., Shackleton, N. J. & Streeter, H. 1986. Graphic correlation of oxygen isotope stratigraphy application to the late Quaternary. PALEOCEANOGR 1, 137–62.CrossRefGoogle Scholar
Raymo, M. E., Ruddiman, W. F., Backman, J., Clement, B. M. & Martinson, D. G. 1989. Late Pliocene variations in northern hemisphere ice sheets and North Atlantic deep water circulation. PALEOCEANOGR 4, 413–46.CrossRefGoogle Scholar
Raymo, M. E., Ruddiman, W. F., Shackleton, N. J. & Oppo, D. W. 1990. Evolution of global ice volume and Atlantic-Pacific δ13C gradients over the last 2·5 M.Y. EARTH AND PLANET SCI LETT 97, 353–68.CrossRefGoogle Scholar
Ruddiman, W. F., McIntyre, A. & Raymo, M. E. 1986. Matuyama 41,000-year cycles: North Atlantic Ocean and northern hemisphere ice sheets. EARTH AND PLANET SCI LETT 80, 117–29.CrossRefGoogle Scholar
Ruddiman, W. F., Cameron, D. & Clement, B. M. 1987. Sediment disturbance and correlation of offset holes drilled with the hydraulic piston corer. In Ruddiman, W. F., Kidd, R. B., Thomas, E. et al. , (eds) INITIAL REPORTS OF THE DEEP SEA DRILLING PROJECT, 94, pp. 615634. Washington: U.S. Government Printing Office.Google Scholar
Ruddiman, W. F., Raymo, M. E., Martinson, D. G., Clement, B. M. & Backman, J. 1989. Pleistocene evolution: Northern hemisphere ice sheets and North Atlantic Ocean. PALEOCEANOGR 4, 353412.CrossRefGoogle Scholar
Shackleton, N. J. 1969. The last interglacial in the marine and terrestrial records. PROC R SOC LOND (B) 174, 135–54.Google Scholar
Shackleton, N. J. 1977. Carbon-13 in Uvigerina: tropical rainforest history and the Equatorial Pacific carbonate dissolution cycles. In Andersen, N. R. & Malahoff, A. (eds) The Fate of Fossil Fuel CO2 in the Oceans. pp. 401–27. New York: Plenum.CrossRefGoogle Scholar
Shackleton, N. J. & Hall, M. A. 1983. Stable isotope record of Hole 504 sediments: high-resolution record of the Pleistocene. In Cann, J. R., Langseth, M. G. et al. (eds) INITIAL REPORTS OF THE DEEP SEA DRILLING PROJECT 69, 431441.Google Scholar
Shackleton, N. J. & Hall, M. A. 1989. Stable isotope history of the Pleistocene at ODP Site 677. In Becker, K., Sakai, H. et al. (eds) PROC ODP, SCI RESULTS 111, College Station, TX, 295316.Google Scholar
Shackleton, N. J. & Opdyke, N. D. 1973. Oxygen isotope and palaeomagnetic stratigraphy of equatorial Pacific core V28-238: oxygen isotope temperatures and ice volumes on a 105 and 106 year scale. QUATERN RES 3, 3955.CrossRefGoogle Scholar
Shackleton, N. J. & Opdyke, N. D. 1976. Oxygen isotope and paleomagnetic stratigraphy of Pacific core V28-239, Late Pliocene to Latest Pleistocene. In Cline, R. M. & Hays, J. D. (eds) Investigation of Late Quaternary Paleoceanography and Paleoclimatology, GEOL SOC AMER MEM 145, 449–64.Google Scholar
Shackleton, N. J. & Pisias, N. G. 1985. Atmospheric carbon dioxide, orbital forcing and climate. In Sundquist, E. T. & Broecker, W. S. (eds) The Carbon Cycle and Atmospheric CO2: Natural Variations Archaean to Present. GEOPHYS MONOGR 32, 303–317. American Geophysical Union, Washington, D.C.Google Scholar
Shackleton, N. J., Backman, J., Zimmerman, H. B., Kent, D. V., Hall, M. A., Roberts, D. G., Schnitker, D., Baldauf, J. G., Despraires, A., Homrighausen, R., Huddlestun, P., Keene, J. B., Kaltenback, A. J., Krumsiek, K. A. O., Morton, A. C., Murray, J. W. & Westberg-Smith, J. 1984. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. NATURE 307, 620–3.CrossRefGoogle Scholar
Shipboard Scientific Party, 1988. Sites 677 and 678. In Becker, K., Sakai, H. et al. (eds) PROC ODP INIT REPTS (Pt A) 111, 253346.Google Scholar
Steiger, R. H. & Jäger, E. 1977. Subcommission on Geochronology: convention on the use of decay constants in geo- and cosmochronology. EARTH PLANET SCI LETT 36, 359–62.CrossRefGoogle Scholar