Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T11:53:14.911Z Has data issue: false hasContentIssue false

Some observations on the use of zircon U-Pb geochronology in the study of granitic rocks

Published online by Cambridge University Press:  03 November 2011

Ian S. Williams
Affiliation:
Ian S. Williams, Research School of Earth Sciences, The Australian National University, GPO Box 4, Canberra City, ACT 2601, Australia

Abstract

In situ, microscale, U-Pb isotopic analyses of zircon using the SHRIMP ion microprobe demonstrate both the potential and the limitations of zircon U-Pb geochronology. Most zircons, whether from igneous or metamorphic rocks, need to be considered as mixed isotopic systems. In simple, young igneous rocks the mixing is principally between isotopically disturbed and undisturbed zircon. In polymetamorphic rocks, several generations of zircon growth can coexist, each with a different pattern of discordance. A similar situation exists for igneous rocks rich in inherited zircon, as these contain both melt-precipitated zircon and inherited components of several different ages. Microscale analysis by ion probe makes it possible to sample the record of provenance, age and metamorphic history commonly preserved within a single zircon population. It also indicates how the interpretation of conventionallymeasured bulk zircon isotopic compositions might be improved.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, C. A. & Hinthorne, J. R. 1972. U, Th, Pb and REE abundances and 207Pb/206Pb ages of individual minerals in returned lunar material by ion microprobe mass analysis. EARTH PLANET SCI LETT 14, 195200.CrossRefGoogle Scholar
Black, L. P. & James, P. R. 1979. Preliminary isotopic ages from Enderby Land, Antarctica. J GEOL SOC AUST 26, 266–7.Google Scholar
Black, L. P. & James, P. R. 1983. Geological history of the Archaean Napier complex of Enderby Land. In Oliver, R. L., James, P. R. & Jago, J. B. (eds) Antarctic Geoscience, 11–5. Canberra: Australian Academy of Science.Google Scholar
Black, L. P., James, P. R. & Harley, S. L. 1983. The geochronology, structure and metamorphism of early Archaean rocks at Fyfe Hills, Enderby Land, Antarctica. PRECAMB RES 21, 197222.CrossRefGoogle Scholar
Black, L. P., Williams, I. S. & Compston, W. 1986. Four zircon ages from one rock: the history of a 3930 Ma-old granulite from Mount Sones, Enderby Land, Antarctica. CONTRIB MINERAL PETROL 94, 427–37.CrossRefGoogle Scholar
Chappell, B. W. & White, A. J. R. 1974. Two contrasting granite types. PAC GEOL 8, 173–4.Google Scholar
Chappell, B. W. & White, A. J. R. 1984. I- and S-type granites in the Lachlan Fold Belt, southeastern Australia. In Keqin, Xu & Guanchi, Tu (eds) Geology of granites and their metallogenic relations, 87101, Beijing: Science Press.Google Scholar
Chappell, B. W. & White, A. J. R. 1992. I- and S-type granites in the Lachlan Fold Belt. TRANS R SOC EDINBURGH EARTH SCI 83, 126.Google Scholar
Chappell, B. W., Williams, I. S., White, A. J. R. & McCulloch, M. T. 1990. Granites of the Lachlan Fold Belt, ICOG-7 Excursion Guide A2, BMR RECORD 1990/48.Google Scholar
Chen, Y. D. & Williams, I. S. 1990. Zircon inheritance in mafic inclusions from Bega Batholith granites, southeastern Australia: an ion microprobe study. J GEOPHYS RES 95, 17, 787–96.Google Scholar
Claoué-Long, J. C, Jones, P. J. & Roberts, J. 1992. The age of the Devonian-Carboniferous boundary. In Paproth, E. (ed.) Final Report of the IUGS Working Group on the Devonian-Carboniferous boundary (in press).CrossRefGoogle Scholar
Clemens, HJ.D., Holloway, J. R. & White, A. J. R. 1986. Origin of an A-type granite: experimental constraints. AM MINERAL 71, 317–24.Google Scholar
Collins, W. J., Beams, S. D., White, A. J. R. & Chappell, B. W. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. CONTRIB MINERAL PETROL 80, 189200.CrossRefGoogle Scholar
Compston, W., Williams, I. S. & Clement, S. W. 1982. U-Pb ages within single zircons using a sensitive high mass-resolution ion microprobe. ABSTR 30TH AM SOC MASS SPECTROM CONF, 593–5.Google Scholar
Compston, W., Williams, I. S., Campbell, I. H. & Gresham, J. J. 1985/1986. Zircon xenocrysts from the Kambalda volcanics: age constraints and direct evidence for older continental crust below the Kambalda-Norseman greenstones. EARTH PLANET SCI LETT 76, 299311.CrossRefGoogle Scholar
Compston, W., Williams, I. S., Kirschvink, J. L., Zichao, Zhang & Guogan, Ma 1992. Zircon U-Pb ages for the Early Cambrian time scale. J GEOL SOC LONDON (in press).CrossRefGoogle Scholar
Copeland, P., Parrish, R. R. & Harrison, T. M. 1988. Identification of inherited radiogenic Pb in monazite and its implications for U-Pb systematics. NATURE 333, 760–3.CrossRefGoogle Scholar
De Paolo, D. J., Manton, W. I., Grew, E. S. & Halpern, M. 1982. Sm-Nd, Rb-Sr and U-Th-Pb systematics of granulite facies rocks from Fyfe Hills, Enderby Land, Antarctica. NATURE 298, 614–8.CrossRefGoogle Scholar
Eriksson, S. C. & Williams, I. S. 1992. Inherited zircons from the Paleozoic Parks Pond pluton, Maine: direct evidence for Archean components in the Avalon basement. BULL GEOL SOC AM (in press).Google Scholar
Fanning, C. M., Flint, R. B., Parker, A. J., Ludwig, K. R. & Blissett, A. H. 1988. Refined Proterozoic evolution of the Gawler craton, South Australia, through U-Pb zircon geochronology. PRECAMBRIAN RES 40/41, 363–86.CrossRefGoogle Scholar
Futa, K. 1981. Sm-Nd systematics of a tonalite augen gneiss and its constituent minerals from northern Michigan. GEOCHIM COSMOCHIM ACTA 45, 1-2, 245–9.CrossRefGoogle Scholar
Gebauer, D., Quandt, A., Compston, W., Williams, I. S. & Grünenfelder, M. 1988. Archaean zircons in a retrograded, Caledonian eclogite of the Gotthard Massif (Central Alps, Switzerland). SCHWEIZ MINERAL PETROGR MITT 68, 485–90.Google Scholar
Grauert, B. & Arnold, A. 1968. Deutung diskordanter Zirconalter der Silvrettadecke und des Gotthardmassivs (Schweizer Alpen). CONTRIB MINERAL PETROL 20, 3456.CrossRefGoogle Scholar
Grew, E. S. 1978. Precambrian basement at Molodezhnaya station, East Antarctica. BULL GEOL SOC AM 89, 801–13.2.0.CO;2>CrossRefGoogle Scholar
Grew, E. S. & Manton, W. I. 1979. Archean rocks in Antarctica: 2·5 billion year uranium lead ages of pegmatites in Enderby Land. SCIENCE 206, 443–5.CrossRefGoogle ScholarPubMed
Gulson, B. L. & Krogh, T. E. 1973. Old lead components in the young Bergell Massif, south-east Swiss Alps. CONTRIB MINERAL PETROL 40, 239–52.CrossRefGoogle Scholar
Harrison, T. M. & Watson, E. B., 1984. The behaviour of apatite during crustal anatexis: equilibrium and kinetic considerations. GEOCHIM COSMOCHIM ACTA 48, 1-2, 464–77.CrossRefGoogle Scholar
Hinthorne, J. R., Andersen, C. A., Conrad, R. L. & Lovering, J. F. 1979. Single-grain207Pb/206Pb and U/Pb age determinations with a 10μm spatial resolution using the ion microprobe mass analyser (IMMA). CHEM GEOL 25, 271303.CrossRefGoogle Scholar
Holland, H. D. & Gottfried, D. 1955. The effect of nuclear radiation on the structure of zircon. ACTA CRYSTALLOGR 8, 291300.CrossRefGoogle Scholar
Kinny, P. D., Compston, W. & Williams, I. S. 1991. A reconnaissance ion-probe study of hafnium isotopes in zircons. GEOCHIM COSMOCHIM ACTA 55, 849–59.CrossRefGoogle Scholar
Krogh, T. E. 1973. A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. GEOCHIM COSMOCHIM ACTA 37, 485–94.CrossRefGoogle Scholar
Krogh, T. E. 1982a. Improved accuracy of U-Pb zircon dating by selection of more concordant fractions using a high gradient magnetic separation technique. GEOCHIM COSMOCHIM ACTA 46, 631–5.CrossRefGoogle Scholar
Krogh, T. E. 1982b. Improved accuracy of U-Pb zircon ages by the creation of more concordant systems using an air abrasion technique. GEOCHIM COSMOCHIM ACTA 46, 637–49.CrossRefGoogle Scholar
Krogh, T. E. & Davis, G. L. 1974. Alteration in zircons with discordant U-Pb ages. CARNEGIE INST WASHINGTON YEARB 73, 560–7.Google Scholar
Krogh, T. E. & Davis, G. L. 1975. Alteration in zircons and differential dissolution of altered and metamict zircon. CARNEGIE INST WASHINGTON YEARB 74, 619–23.Google Scholar
Lancelot, J., Vitrac, A. & Allègre, C. J. 1975. Uranium and lead isotopic dating with grain-by-grain zircon analysis: a study of complex geological history with a single rock. EARTH PLANET SCI LETT 29, 357–66.CrossRefGoogle Scholar
Lovering, J. F., Travis, G. A., Comaford, D. J. & Kelly, P. R. 1981. Evolution of the Gondwana Archaean shield: zircon dating by ion microprobe, and relationships between Australia and Wilkes Land. In Glover, J. E. & Groves, D. I. (eds) Archean Geology. GEOL SOC AUST SPEC PUBL 7, 193203.Google Scholar
Ludwig, K. R. & Cooper, J. A. 1984. Geochronology of Precambrian granites and associated U-Th-Ti mineralisation, northern Olary Province, South Australia. CONTRIB MINERAL PETROL 86, 298308.CrossRefGoogle Scholar
Manhes, G., Minster, J. F. & Allègre, C. J. 1978. Comparative Uranium-thorium-lead and rubidium-strontium study of the Saint Sèverin amphoterite: consequences for early solar system chronology. EARTH PLANET SCI LETT 39, 1424.CrossRefGoogle Scholar
McCulloch, M. T. & Black, L. P. 1984. Sm-Nd isotopic systematics of Enderby Land granulites and evidence for redistribution of Sm and Nd during metamorphism. EARTH PLANET SCI LETT 71, 4658.CrossRefGoogle Scholar
McCulloch, M. T. & Chappell, B. W. 1982. Nd isotopic characteristics of S- and I-type granites. EARTH PLANET SCI LETT 58, 5164.CrossRefGoogle Scholar
McCulloch, M. T. & Wasserburg, G. J. 1980. Early Archean Sm-Nd model ages from a tonalitic gneiss, northern Michigan. SPEC PAP GEOL SOC AM 182, 135–8.Google Scholar
McLaren, A. C, Gerald, J. D.Fitz & Williams, I. S. 1990. The microstructure of zircon and its influence on the Pb/U age measured by the ion microprobe. GEOL SOC AUST ABSTR 27, 65.Google Scholar
Pasteels, P. & Michot, J. 1968. Nouveaux résultats géochronologiques obtenus par la méthode U-Pb sur les zircons des Monts Sör-Rondane (Antarctique). ANN SOC GÉOL DE BELGIQUE 91, 283303.Google Scholar
Patchett, P. J. 1983. Importance of the Lu-Hf isotopic system in studies of planetary chronology and chemical evolution. GEOCHIM COSMOCHIM ACTA 47, 8191.CrossRefGoogle Scholar
Paterson, B. A., Rogers, G., Stephens, W. E., Williams, I. S., Hinton, R. W. & Herd, D. A. 1992. The nature of zircon inheritance in two granite plutons. TRANS R SOC EDINBURGH EARTH SCI 83, 459–71.Google Scholar
Peterman, Z. E., Zartman, R. E. & Sims, P. K. 1980. Tonalitic gneiss of early Archean age from northern Michigan. SPEC PAP GEOL SOC AM 182, 125–34.Google Scholar
Peterman, Z. E., Zartman, R. E. & Sims, P. K. 1986. A protracted Archean history in the Watersmeet gneiss dome, northern Michigan. BULL US GEOL SURV 1622, 5164.Google Scholar
Pidgeon, R. T. & Aftalion, M. 1978. Cogenetic and inherited zircon U-Pb systems in granites: Palaeozoic granites of Scotland and England. In Bowes, D. R. & Leake, B. E. (eds) Crustal evolution in northwestern Britain and adjacent regions. GEOL J SPEC ISSUE 10, 183220.Google Scholar
Pupin, J. P. 1980. Zircon and granite petrology. CONTRIB MINERAL PETROL 73, 207–20.CrossRefGoogle Scholar
Roddick, J. C. & Compston, W. 1977. Strontium isotopic equilibration: a solution to a paradox. EARTH PLANET SCI LETT 34, 238–46.CrossRefGoogle Scholar
Sawka, W. N., Banfield, J. F. & Chappell, B. W. 1986. A weathering-related origin of widespread monazite in S-type granites. GEOCHIM COSMOCHIM ACTA 50, 171–5.CrossRefGoogle Scholar
Sawka, W. N. & Harrison, T. M. 1986. The interpretation of monazite ages from I- and S-type granitoids. GEOL SOC AM PROG ABSTR 18, 64.Google Scholar
Sheraton, J. W., Offe, L. A., Tingey, R. J. & Ellis, D. J. 1980. Enderby Land, Antarctica-an unusual Precambrian high-grade metamorphic terrain. J GEOL SOC AUST 27, 118.CrossRefGoogle Scholar
Sheraton, J. W. & Black, L. P. 1983. Geochemistry of Precambrian gneisses: relevance for the evolution of the East Antarctic shield. LITHOS 16, 273–96.CrossRefGoogle Scholar
Silver, L. T. 1963. The relation between radioactivity and discordance in zircons. NAT ACAD SCI PUBL 1075, 34–9.Google Scholar
Silver, L. T. & Deutsch, S. 1961. Uranium lead method on zircons. ANN NEW YORK ACAD SCI 91, 279–83.CrossRefGoogle Scholar
Silver, L. T. & Deutsch, S. 1963. Uranium-lead isotopic variations in zircons: a case study. J GEOL 71, 721–58.CrossRefGoogle Scholar
Sims, P. K., Peterman, Z. E., Prinz, W. C. & Benedict, F. C. 1984. Geology, geochemistry, and age of Archean and early Proterozoic rocks in the Marenisco-Watersmeet area, northern Michigan. PROF PAP US GEOL SURV 1292–A, A1–A41.Google Scholar
Sommerauer, J. 1979. Physico-chemical stability of zircon and its U-Pb system. GEOL SOC AM PROG ABSTR 11, 521.Google Scholar
Tetley, N. W. 1979. Geochronology by the49Ar/39 Ar technique using the HIFAR reactor. Unpublished Ph.D. Thesis, The Australian National University, Canberra.Google Scholar
Tucker, R. D., Krogh, T. E., Ross, R. J. Jr & Williams, S. H. 1990. Time-scale calibration by high-precision U-Pb zircon dating of interstratified volcanic ashes in the Ordovician and Lower Silurian stratotypes of Britain. EARTH PLANET SCI LETT 100, 51–8.CrossRefGoogle Scholar
Vavra, G. 1990. On the kinematics of zircon growth and its petrogenetic significance: a cathodoluminescence study. CONTRIB MINERAL PETROL 106, 90–9.CrossRefGoogle Scholar
Watson, E. B. & Harrison, T. M. 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. EARTH PLANET SCI LETT 64, 295304.CrossRefGoogle Scholar
White, A. J. R. & Chappell, B. W. 1977. Ultrametamorphism and granitoid genesis. TECTONOPHYSICS 43, 722.CrossRefGoogle Scholar
Williams, I. S. 1978. The Berridale Batholith: a lead and strontium isotopic study of its age and origin. Unpublished Ph.D. Thesis, The Australian National University, Canberra.Google Scholar
Williams, I. S. & Claesson, S. 1987. Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides, II, Ion microprobe zircon U-Th-Pb. CONTRIB MINERAL PETROL 97, 205–17.CrossRefGoogle Scholar
Williams, I. S., Compston, W., Chappell, B. W. & Shirahase, T. 1975. Rubidium-strontium age determinations on micas from a geologically controlled, composite batholith. J GEOL SOC AUST 22, 497505.CrossRefGoogle Scholar
Williams, I. S., Tetley, N. W., Compston, W. & McDougall, I. 1982. A comparison of K-Ar and Rb-Sr ages of rapidly cooled igneous rocks: two points in the Paleozoic time scale re-evaluated. J GEOL SOC LONDON 139, 557–68.CrossRefGoogle Scholar
Williams, I. S., Compston, W., Black, L. P., Ireland, T. R. & Foster, J.J. 1984. Unsupported radiogenic Pb in zircon: a cause of anomalously high Pb-Pb, U-Pb and Th-Pb ages. CONTRIB MINERAL PETROL 88, 322–7.CrossRefGoogle Scholar
Williams, I. S., Chen, Y. D., Chappell, B. W. & Compston, W. 1988. Dating the sources of Bega Batholith granites by ion microprobe. GEOL SOC AUST ABSTR 21, 424.Google Scholar