Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T21:38:05.312Z Has data issue: false hasContentIssue false

A 350 ka history of the Indian Southwest Monsoon—evidence from deep-sea cores, northwest Arabian Sea

Published online by Cambridge University Press:  03 November 2011

Graham B. Shimmield
Affiliation:
Department of Geology and Geophysics, University of Edinburgh, West Mains Road, Edinburgh, UK.
Stephen R. Mowbray
Affiliation:
Department of Geology and Geophysics, University of Edinburgh, West Mains Road, Edinburgh, UK.
Graham P. Weedon
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, U.K.

Abstract

The Indian summer Southwest Monsoon plays an important part in influencing, and regulating, the productivity and sedimentation in the northwest Arabian Sea at the present day, by driving coastal upwelling. This leaves permanent sedimentological and geochemical records in the accumulating deep-sea sediments. Cores 722B and 724C were raised from the Owen Ridge and Oman Margin, respectively, during Leg 117 of the Ocean Drilling Program and have been subjected to geochemical analyses and α-spectrometry. A comparative core, CD17–30, situated on the adjacent Indus Fan abyssal plain, has also been studied. The chronostratigraphy of the cores has been established with δ 18O stratigraphy, giving a 350 ka climate record. Changes in the total sediment mass accumulation rates occur on glacial/interglacial time scales, with maximum fluxes occurring during glacial episodes. The high fluxes are predominantly due to wind-transported dust at the ridge and margin sites. Compositional parameters (e.g. the Ti/Al ratio) indicating the proportion of heavy minerals present within the dust, suggests that strong winds associated with the Southwest Monsoon, occur with Milankovitch periodicities, and are dominated by the precession (23 ka) frequency. The wind strength controls the proportion of heavy minerals transported to the Arabian Sea, whilst continental aridity influences the timing of deflation from the Arabian and Somalian peninsulas. Tracers of palaeoproductivity (Ba/Al) indicate strong coherence and phase with the proxy ice volume (foraminiferal δ 18O) signal, suggesting global climate parameters (ice volume, continental aridity) determine coastal productivity by influencing nutrient supply. In relation to productivity, the roles of oceanic circulation/stratification and nutrient supply through continental runoff are discussed. This study shows that the Southwest Monsoon appears to only affect the shorter period (precession cycle, 23 ka band) productivity signal. Evidence from excess 230Th suggests deep oceanic circulation (at about 2000 m depth) was more intense 110 ka BP decreasing toward 40 ka BP. By the use of these various geochemical tracers a new, and comprehensive, view of the interaction of the Monsoon and global climate with marine productivity through the late Pleistocene has been obtained.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adelseck, C. G. Jr, & Anderson, T. F. 1978. The late Pleistocene record of productivity fluctuations in the eastern equatorial Pacific Ocean. GEOLOGY 6, 388–91.2.0.CO;2>CrossRefGoogle Scholar
Anderson, R. F., Bacon, M. P. & Brewer, P. G. 1983a. Removal of 230Th and 231Pa from the open ocean. EARTH PLANET SCI LETT 62, 723.CrossRefGoogle Scholar
Anderson, R. F., Bacon, M. P. & Brewer, P. G. 1983b. Removal of 230Th and 231Pa at ocean margins. EARTH PLANET SCI LETT 66, 7390.CrossRefGoogle Scholar
Arrhenius, G. O. S. 1952. Sediment cores from the east Pacific. Rep. Swed. Deep Sea Exped. 19471948, 5(1), 227pp.Google Scholar
Bacon, M. P. 1984. Glacial to interglacial changes in carbonate and clay sedimentation in the Atlantic Ocean estimated from 230Th measurements. ISO GEOSCIENCE 2, 97111.Google Scholar
Berger, W. H. 1973. Deep-sea carbonates: Pleistocene dissolution cycles. J FORAM RES 3, 187–95.CrossRefGoogle Scholar
Berger, W. H., Finkel, R. C., Killingley, J. S. & Marchig, V. 1983. Glacial–Holocene transition in deep-sea sediments: Manganese-spike in the east equatorial Pacific. NATURE 303, 231–3.CrossRefGoogle Scholar
Bishop, J. K. B. 1988. The barite-opal-organic carbon association in oceanic particulate matter. NATURE 332, 341–3.CrossRefGoogle Scholar
Bonatti, E., Simmons, E. C., Berger, D., Hamlyn, P. R. & Lawrence, J. 1983. Ultramafic rock/seawater interaction in the oceanic crust. Mg-silicate (sepiolite) deposit from the Indian Ocean floor. EARTH PLANET SCI LETT 62, 229–38.CrossRefGoogle Scholar
Boyle, E. A. 1983. Chemical accumulation variations under the Peru Current during the past 130,000 years. J GEOPHYS RES 88, 7667–80.CrossRefGoogle Scholar
Boyle, E. A. 1986. Paired carbon isotope and cadmium data from benthic foraminifera: Implications for changes in oceanic phosphorus, oceanic circulation, and atmospheric carbon dioxide. GEOCHIM COSMOCHIM ACTA 50, 265–76.CrossRefGoogle Scholar
Boyle, E. A. & Keigwin, L. D. 1982. Deep circulation of the North Atlantic over the last 200,000 years, Geochemical evidence. SCIENCE 218, 784–7.CrossRefGoogle Scholar
Boyle, E. A. & Keigwin, L. D. 1985. Comparison of Atlantic and Pacific paleochemical records for the last 215,000 years; Changes in deep ocean circulation and chemical inventories. EARTH PLANET SCI LETT 76, 135–50.CrossRefGoogle Scholar
Clemens, S. C. & Prell, W. L. 1990. Late Pleistocene variability of Arabian Sea summer monsoon winds and continental aridity: Eolian records from the lithogenic component of deep–sea sediments. PALEOCEANOGR 5, 109–45.CrossRefGoogle Scholar
Cochran, J. K. & Osmond, J. K. 1976. Sedimentation patterns and accumulation rates in the Tasman Basin. DEEP-SEA RES 23, 193210.Google Scholar
Curry, W. B. & Lohmann, G. P. 1983. Reduced advection into Atlantic Ocean deep eastern basins during last glacial maximum. NATURE 306, 577–80.CrossRefGoogle Scholar
Delaney, M. G. & Boyle, E. A. 1988. Tertiary paleoceanic chemical variability: unintended consequences of simple geochemical models. PALEOCEANOGR 3, 137–56.CrossRefGoogle Scholar
Duplessy, J. C. 1982. Glacial to interglacial contrasts in the northern Indian Ocean. NATURE 295, 494–98.CrossRefGoogle Scholar
Duplessy, J. C., Shackleton, N. J., Fairbanks, R. G., Labeyrie, L., Oppo, D. & Kallel, N. 1988. Deepwater source variations during the last climatic cycle and their impact on global deepwater circulation. PALEOCEANOGR 3, 343–60.CrossRefGoogle Scholar
Duplessy, J. C., Labeyrie, L., Kallel, N. & Juillet-Leclerc, A. 1989. Intermediate and deep water characteristics during the last glacial maximum. In Berger, A., Schneider, S. & Duplessy, J. C. (eds) Climate and Geosciences: A Challenge for Science and Society in the 21st Century, pp. 105–20. NATO ASI Series, no. 285. Norwell, Mass.: Kluwer Academic Publishers.CrossRefGoogle Scholar
Dymond, J. 1981. Geochemistry of Nazca plate surface sediments: An evaluation of hydrothermal, biogenic, detrital, and hydrogenous sources. GEOL SOC AMER MEM 154, 133173.Google Scholar
Emiliani, C. 1955. Pleistocene temperatures. J GEOL 63, 538–78.CrossRefGoogle Scholar
Fenchel, T. & Finlay, B. J. 1984. Geotaxis in the ciliated protozoan. Loxodes, J EXP BIOL 110, 1733.CrossRefGoogle Scholar
Finlay, B. J., Hetherington, N. B. & Davison, W. 1983. Active biological participation in lacustrine barium geochemistry. GEOCHIM COSMOCHIM ACTA 47, 1325–9.CrossRefGoogle Scholar
Finney, B. P., Lyle, M. W. & Heath, G. R. 1988. Sedimentation at MANOP Site H (eastern equatorial Pacific) over the past 400,000 years: Climatically induced redox variations and their effects on transition metal cycling. PALEOCEANOGR 3, 169–89.CrossRefGoogle Scholar
Hermelin, J. O. R. & Shimmield, G. B., 1990. The importance of the oxygen minimum zone and sediment geochemistry on the distribution of benthic foraminfera in the NW Indian Ocean. MAR GEOL 91, 129.CrossRefGoogle Scholar
Imbrie, J., Hayes, J. D., Martinson, D. G., Mclntyre, A., Mix, A. C., Morley, J. J., Pisias, N. G., Prell, W. L. & Shackleton, N. J. 1984. The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18O record. In Berger, A., Imbrie, J., Hays, J., Kukla, G. & Saltzman, B. (eds) Milankovitch and Climate, Part 1, pp. 269305. Hingham, Mass.: D. Reidel.Google Scholar
Kallel, N., Labeyrie, L., Julliet-Leclerc, A. & Duplessy, J. C. 1988. A deep hydrological front between intermediate and deep-water masses in the Glacial Indian Ocean. NATURE 333, 651–5.CrossRefGoogle Scholar
Keir, R. S. 1988. On the late Pleistocene ocean geochemistry and circulation. PALEOCEANOGR 3, 413–45.CrossRefGoogle Scholar
Kolla, V., Ray, P. K. & Kostecki, J. A. 1981. Surficial sediments of the Arabian Sea. MAR GEOL 41, 183204.CrossRefGoogle Scholar
Ku, T.-L., Knauss, K. G. & Mathieu, G. G. 1977. Uranium in open ocean: concentration and isotope composition. DEEP-SEA RES 24, 1005–17.CrossRefGoogle Scholar
Kutzbach, J. E. 1981. Monsoon climate of the Early Holocene: Climate experiment with the Earth's orbital parameters for 9000 years ago. SCIENCE 214, 5961.CrossRefGoogle ScholarPubMed
Labracherie, M., Barde, M.-F., Moyes, J. & Pujos-Lamy, A. 1983. Variability of upwelling regimes (northwest Africa, south Arabia) during the latest Pleistocene: A comparison. In Suess, E. & Thiede, J. (eds.) Coastal Upwelling, Part A, pp. 347–64. New York: Plenum Press.Google Scholar
Lea, D. W. & Boyle, E. A. 1989. Barium content of benthic records temporal variability in equatorial Pacific upwelling. NATURE 340, 373–6.CrossRefGoogle Scholar
Lyle, M., Heath, G. R., Murray, D. W., Finney, B. P., Dymond, J., Robbins, J. M. & Brooksforce, K. 1988. The record of late Pleistocene sedimentation in the eastern equatorial Pacific Ocean. PALEOCEANOGR 3, 3959.CrossRefGoogle Scholar
Mangini, A. & Diester-Haass, L. 1983. Excess Th-230 in sediments off NW Africa traces upwelling in the past. In Suess, E. & Thiede, J. (eds). Coastal Upwelling, pp. 455–71. New YorkPlenum Press.CrossRefGoogle Scholar
McMurtry, G. M. & Yeh, H. W. 1981. Hydrothermal clay mineral formation of East Pacific Rise and Bauer Basin sediments. CHEM GEOL 32, 189205.CrossRefGoogle Scholar
Middleton, N. J. 1986. Dust storms in the Middle East. J ARID ENVIRON 10, 8386.CrossRefGoogle Scholar
Nair, R. R., Ittekot, V., Manganini, S. J., Ramaswamy, V., Haake, B., Degens, E. T., Desai, B. N. & Honjo, S. 1989. Increased particle flux to the deep ocean related to monsoons. NATURE 338, 749–50.CrossRefGoogle Scholar
Nath, B. G., Rao, V. P. & Becker, K. P. 1989. Geochemical evidence of terrigenous influence in deep-sea sediments up to 8°S in the central Indian basin. MAR GEOL 87, 301–13.CrossRefGoogle Scholar
Norrish, K. & Hutton, J. T. 1969. An accurate X-ray spectrographic method for the analysis of a wide range of geological samples. GEOCHIM COSMOCHIM ACTA 33, 431–54.CrossRefGoogle Scholar
Pedersen, T. F. 1983. Increased productivity in the eastern equatorial Pacific during the last glacial maximum (19,000 to 14,000 yr BP). GEOLOGY 11, 1619.2.0.CO;2>CrossRefGoogle Scholar
Pisias, N. G. 1976. Late Quaternary sediment of the Panama Basin: Sedimentation rates, periodicities, and controls of carbonate and opal accumulation. GEOL SOC AMER MEM 145, 375–92.Google Scholar
Prell, W. L. 1984a. Variation in monsoon upwelling; A response to changing solar radiation, Climate Processes and Climate Sensitivity, Geophys. Monogr. Ser., 29, AGU, Washington DC.Google Scholar
Prell, W. L. 1984b. Monsoon climate of the Arabian Sea during the late Quaternary; A response to changing solar radiation. In Berger, A., Imbrie, J., Hays, J., Kukla, G. & Saltzman, B. (eds) Milankovitch and Climate, pp. 349–66. Hingham, Mass.: D. Reidel.Google Scholar
Prell, W. L. & Curry, W. B. 1981. Faunal and isotopic indices of monsoonal upwelling: Western Arabian Sea. OCEANOL ACTA 4, 91–8.Google Scholar
Prell, W. L. & Kutzbach, J. E. 1987. Monsoon variability over the past 150,000 years. J GEOPHYS RES 92, 8411–25.CrossRefGoogle Scholar
Prell, W. L. & Streeter, H. F. 1982. Temporal and spatial patterns of monsoonal upwelling along Arabia: A modern analogue for interpretation of Quaternary SST anomalies. J MAR RES 40, 143–55.Google Scholar
Prell, W. L. & Van Campo, E. 1986. Coherent response of the Arabian Sea upwelling and pollen transport to late Quaternary monsoonal winds. NATURE 323, 526–8.CrossRefGoogle Scholar
Prell, W., Niiutsuma, N., Emeis, K.-C., Al-Sulaiman, Z. K., Al-Tobbah, A. N. K., Anderson, D. M., Barnes, R. O., Bilak, R. A., Bloemendal, J., Bray, C. J., Busch, W. H., Clemens, S. C., de Menocal, P., Debrebant, P., Hayashida, A., Hermelin, J. O. R., Jarrard, R. D., Krissek, L. A., Kroon, D., Murray, D. W., Nigrini, C. A., Pedersen, T. F., Ricken, W., Shimmield, G. B., Spaulding, S. A., Takayama, T., Lo ten Haven, H. & Weedon, G. P. 1989. Proc. ODP, Ink. Repts. 117, College Station, TX (Ocean Drilling Program).Google Scholar
Qasim, S. Z. 1982. Oceanography of the northern Arabian Sea. DEEP-SEA RES 29, 1041–68.CrossRefGoogle Scholar
Rossignol-Strick, M. 1983. African monsoons, an immediate climate response to orbital insolation. NATURE 304, 46–9. foraminifera controlled by bottom water composition. NATURE 338, 751–3.CrossRefGoogle Scholar
Lea, D. W., Shen, G. T. & Boyle, E. A. 1989. Coralline bariumGoogle Scholar
Schmitz, B. 1987a. The TiO2/Al2O3 ratio in the Cenozoic Bengal abyssal fan sediments and its use as a palaeostream energy indicator. MAR GEOL 76, 195206.CrossRefGoogle Scholar
Schmitz, B. 1987b. Barium, high productivity, and northward wandering of the Indian continent. PALEOCEANOGR 2, 6377.CrossRefGoogle Scholar
Shackleton, N. J. & Opdyke, N. D. 1973. Oxygen isotope and palaeomagnetic stratigraphy of Pacific core V28-238, oxygen isotope temperatures and ice volumes on a 105 year and 106 year time scale. QUATERN RES 3, 3955.CrossRefGoogle Scholar
Shankar, R., Subbarao, K. V. & Kolla, V. 1987. Geochemistry of surface sediments from the Arabian Sea. MAR GEOL 76, 253–79.CrossRefGoogle Scholar
Shimmield, G. B. 1986. The geochemistry and mineralogy of Pacific sediments, Baja California, Mexico [Ph.D. dissert.]. Univ. of Edinburgh, Edinburgh.Google Scholar
Shimmield, G. B., Murray, J. W., Thomson, J., Bacon, M. P., Anderson, R. F. & Price, N. B. 1986. The distribution and behaviour of 230Th and 231Pa at an ocean margin, Baja California, Mexico. GEOCHIM COSMOCHIM ACTA 50, 2499–507.CrossRefGoogle Scholar
Shimmield, G. B., Price, N. B. & Pedersen, T. F. 1990. The influence of hydrography, bathymetry and productivity on sediment type and composition of the Oman Margin and in the Northwest Arabian Sea. In Robertson, A. H. F. and Ries, A. C. (eds) The Geology and Tectonics of the Oman Region, pp. 761–71. Geol. Soc. Spec. Publ. London: Blackwells.Google Scholar
Shimmield, G. B. & Mowbray, S. R. in press. U-series disequilibrium, particle scavenging, and sediment accumulation during the Late Pleistocene on the Owen Ridge, Site 722. In Prell, W. L. & Niitsuma, N. et al. , Proc. ODP, Sci. Results. 117, College Station, Texas: ODP.Google Scholar
Sirocko, F. & Sarnthein, M. 1989. Wind-borne deposits in the Northwestern Indian Ocean: record of Holocene sediments versus modern satellite data. In Leinen, M. & Sarnthein, M. (eds) Palaeoclimatology and Paleometerology: Modern and Past Patterns of Global Atmospheric Transport, pp. 401–33, NATO Advanced Research Workshop. Norwalk, MA: Kluwer Academic Publishers.CrossRefGoogle Scholar
Slater, R. D. and Kroopnick, P. 1984. Controls on dissolved oxygen distribution and organic carbon deposition in the Arabian Sea. In Haq, B. U. & Milliman, J. D. (eds) Geology and Oceanography of the Arabian Sea and Coastal Pakistan, pp. 305–12. Pakistan Institute of Oceanography. London: Van Nostrand Theinhold.Google Scholar
Spears, D. A. & Kanaris-Sotiriou, R. 1976. Titanium in some Carboniferous sediments from Great Britain. GEOCHIM COSMOCHIM ACTA 40, 345–51.CrossRefGoogle Scholar
Turekian, K. K. & Chan, L. H. 1971. The marine geochemistry of the uranium isotopes, 230Th and 231Pa. In Brunfelt, A. O. & Steines, E. (eds) Activation Analysis in Geochemistry, pp. 311–20. Universitetsforlaget, Oslo.Google Scholar
Turekian, K. K. & Wedepohl, K. H. 1961. Distribution of the elements in some major units of the earth's crust. GEOCHIM COSMOCHIM ACTA 72, 175–92.Google Scholar
Van Campo, E., Duplessy, J. C. & Rossignol-Strick, M. 1982. Climatic conditions deduced from a 150-kyr oxygen isotopepollen record from the Arabian sea. NATURE 296, 56–9.CrossRefGoogle Scholar
Volat, J.-L., Pastouret, L. & Vergnand-Grazzini, C. 1980. Dissolution and carbonate fluctuations in Pleistocene deep-sea cores: a review. MAR GEOL 34, 128.CrossRefGoogle Scholar
Weedon, G. P. and Shimmield, G. B., in press. Late Pleistocene upwelling and productivity variations in the northwest Indian Ocean deduced from spectral analyses of geochemical data from ODP Sites 722 and 724. In Prell, W. L. & Niitsuma, N. et al. , Proc. ODP, Sci. Results, 117, College Station, Texas: ODP.Google Scholar
Wyrtki, K. 1971. Oceanographic Atlas of the International Indian Oceans Expedition. U.S. Government Printing Office, Washington DC, 531pp.Google Scholar