Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T20:54:05.488Z Has data issue: false hasContentIssue false

Recurrent affective disorder: Roots in developmental neurobiology and illness progression based on changes in gene expression

Published online by Cambridge University Press:  31 October 2008

Robert M. Post*
Affiliation:
Biological Psychiatry Branch, National Institute of Mental Health
Susan R. B. Weiss
Affiliation:
Biological Psychiatry Branch, National Institute of Mental Health
Gabriele S. Leverich
Affiliation:
Biological Psychiatry Branch, National Institute of Mental Health
*
Address correspondence and reprint requests to: Robert M. Post, M.D., Chief, Biological Psychiatry Branch, NIMH, Building 10, Room 3N212, 9000 Rockville Pike, Bethesda, MD 20892.

Abstract

Electrophysiological kindling and behavioral sensitization to psychomotor stimulants and stress provide paradigms for understanding how repeated acute events can leave neurobiological residues in gene expression, accounting for the observed long-lasting alterations in behavioral responsivity. Kindling helps conceptualize how repeated electrical stimulation of the brain can progressively evoke increased behavioral and convulsive responsivity, leading to spontaneous seizures in the absence of exogenous stimulation following sufficient stimulations. As kindling unfolds, a complex spatiotemporal cascade of events occurs and includes the induction of immediate early genes (e.g., c-fos) and late effector genes (including peptides and growth factors) possibly associated with the observed changes in brain microstructure (e.g., synapse formation, axonal and dendritic sprouting, apoptosis). Behavioral sensitization to psychomotor stimulants and stress has also been shown to induce related but different cascades of effects on immediate early and late effector gene expression. These may be associated with the observed long-lasting alterations in behavioral responsivity based on prior experience. If these types of alterations are put into a developmental context, this would provide a paradigm for understanding how early life events could exert profound and behaviorally relevant biochemical and microstructural effects on the central nervous system of the developing organism. The conceptual overview offered by the sensitization and kindling models suggests that environmentally triggered neurobiological processes do not form a single or static residue but, instead, engage processes related to developmental neurobiology and learning and memory and whose substrate is constantly evolving over an organism's lifetime.

Type
Articles
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alkon, D. L., & Nelson, T. J. (1990). Specificity of molecular changes in neurons involved in memory storage. FASEB Journal, 4, 15671576.CrossRefGoogle ScholarPubMed
Angst, J. (1986). The course of affective disorders. Psychopathology, 19, 4752.CrossRefGoogle ScholarPubMed
Angst, J. (1992). Course of mood disorders: A challenge to psychopharmacology. Clinical Neuropharmacology, 15(Suppl.), 444a-445a.CrossRefGoogle ScholarPubMed
Angst, J., Merikangas, K., Scheidegger, P., & Wicki, W. (1990). Recurrent brief depression: A new subtype of affective disorder. Journal of Affective Disorders, 19, 8798.CrossRefGoogle ScholarPubMed
Anokhin, K. V., Mileusnic, R., Shamakina, I. Y., & Rose, S. P. (1991). Effects of early experience on c-fos gene expression in the chick forebrain. Brain Research, 544, 101107.CrossRefGoogle ScholarPubMed
Antelman, S. M., Eichler, A. J., Black, C. A., & Kocan, D. (1980). Interchangeability of stress and amphetamine in sensitization. Science, 207, 329331.CrossRefGoogle ScholarPubMed
Bailey, C. H., Chen, M., Keller, F., & Kandel, E. R. (1992). Serotonin-mediated endocytosis of apCAM: An early step of learning-related synaptic growth in aplysia. Science, 256, 645649.CrossRefGoogle ScholarPubMed
Banki, C. M., Bissette, G., Arato, M., & Nemeroff, C. B. (1988). Elevation of immunoreactive CSF TRH in depressed patients. American Journal of Psychiatry, 145, 15261531.Google ScholarPubMed
Banki, C. M., Karmacsi, L., Bissette, G., & Nemeroff, C. B. (1992). CSF corticotropin-releasing hormone and somatostatin in major depression: Response to antidepressant treatment and relapse. European Journal of Neuropsychopharmacology, 2, 107113.CrossRefGoogle ScholarPubMed
Basco, M. R., & Rush, A. J. (1993). A psychosocial treatment package for bipolar I disorder. University of Texas Southwestern Medical Center, Dallas.Google Scholar
Beato, M. (1993). Transcriptional control by nuclear receptors. FASEB Journal, 5, 20442051.CrossRefGoogle Scholar
Bifulco, A., Brown, G. W., & Adler, Z. (1991). Early sexual abuse and clinical depression in adult life. British Journal of Psychiatry, 159, 115122.CrossRefGoogle ScholarPubMed
Brown, E. E., Robertson, G. S., & Fibiger, H. C. (1992). Evidence for conditional neuronal activation following exposure to a cocaine-paired environment: Role of forebrain limbic structures. Journal of Neuroscience, 12, 41124121.CrossRefGoogle ScholarPubMed
Calogero, A. E., Gallucci, W. T., Kling, M. A., Chrousos, G. P., & Gold, P. W. (1989). Cocaine stimulates rat hypothalamic corticotropin-releasing hormone secretion in vitro. Brain Research, 505, 711.CrossRefGoogle ScholarPubMed
Clark, M., Massenburg, G. S., Weiss, S. R. B., & Post, R. M. (1994). Analysis of the hippocampal GABA A receptor system in kindled rats by autoradiographic and in situ hybridization techniques: Contingent tolerance to carbamazepine. Submitted for publication.Google Scholar
Clark, M., Post, R. M., Weiss, S. R. B., Cain, C. J., & Nakajima, T. (1991). Regional expression of c-fos mRNA in rat brain during the evolution of amygdala-kindled seizures. Molecular Brain Research, 11, 5564.CrossRefGoogle ScholarPubMed
Clark, M., Post, R. M., Weiss, S. R. B., & Nakajima, T. (1992). Expression of c-fos mRNA in acute and kindled cocaine seizures in rats. Brain Research, 592, 101106.CrossRefGoogle Scholar
Clark, M., Weiss, S. R. B., & Post, R. M. (1991). Expression of c-fos mRNA in rat brain after intracerebroventricular administration of corticotropin-releasing hormone. Neuroscience Letters, 132, 235238.CrossRefGoogle ScholarPubMed
Cutler, N. R., & Post, R. M. (1982). Life course of illness in untreated manic-depressive patients. Comprehensive Psychiatry, 23, 101115.CrossRefGoogle ScholarPubMed
Dale, N., Schacher, S., & Kandel, E. R. (1987). Longterm facilitation in aplysia involves increase in transmitter release. Science, 239, 282.CrossRefGoogle Scholar
Deminiere, J. M., Piazza, P. V., Guegan, G., & Abrous, N. (1992). Increased locomotor response to novelty and propensity to intravenous amphetamine self-administration in adult offspring of stressed mothers. Brain Research, 586, 135139.CrossRefGoogle ScholarPubMed
Diamond, M. I., Miner, J. N., Yoshinaga, S. K., & Yamamoto, K. R. (1990). Transcription factor interactions: Selectors of positive or negative regulation from a single DNA element. Science, 249, 12661272.CrossRefGoogle ScholarPubMed
Edelman, G. M. (1984). Modulation of cell adhesion during induction, histogenesis, and perinatal development of the nervous system. Annual Review of Neuroscience, 7, 339377.CrossRefGoogle ScholarPubMed
Edelman, G. H. (1992). Bright air, brilliant fire: On the matter of the mind. New York: Basic Books.Google Scholar
Ellicott, A., Hammen, C., Gitlin, M., Brown, G., & Jamison, K. (1990). Life events and the course of bipolar disorder. American Journal of Psychiatry, 147, 11941198.Google ScholarPubMed
Feinberg, I., Thode, H. C., Chugani, H. T., & March, J. D. (1993). Gamma distribution model maturational curves for delta wave amplitude, cortical metabolic rate and synaptic density. Journal of Theoretical Biology, 142, 149161.CrossRefGoogle Scholar
Fontana, D. J., Post, R. M., & Pert, A. (1993). Conditioned increase in mesolimbic dopamine over flow by stimuli associated with cocaine. Brain Research, 629, 3139.CrossRefGoogle Scholar
Freud, S. (1970). Basic psychoanalytic concepts on the theory of instinct (pp. 4647). London: Allen & Unwin.Google Scholar
Fromm, G. H. (1989). The pharmacology of trigeminal neuralgia. Clinical Neuropharmacology, 12, 185194.CrossRefGoogle ScholarPubMed
George, M. S., Jones, M., Post, R. M., Putnam, F., Mikalauskas, K., & Leverich, G. S. (1994). The longitudinal course of affective illness: A mathematical model involving chaos theory. Manuscript submitted for publication:Google Scholar
Glanzman, D. L., Kandel, E. R., & Schacher, S. (1990). Target-dependent structural changes accompanying long-term synaptic facilitation in aplysia neurons. Science, 249, 799802.CrossRefGoogle ScholarPubMed
Goddard, G. V., & Douglas, R. M. (1975). Does the engram of kindling model the engram of normal long term memory. Canadian Journal of Neurological Science, 2, 385394.CrossRefGoogle ScholarPubMed
Goddard, G. V., McIntyre, D. C., & Leech, C. K. (1969). A permanent change in brain function resulting from daily electrical stimulation. Experimental Neurology, 25, 295330.CrossRefGoogle ScholarPubMed
Herman, J. L. (1992). Trauma and recovery. New York: Basic Books.Google Scholar
Holmes, T. H., & Rahe, R. R. (1967). The social readjustment rating scale. Journal of Psychosomatic Research, 11, 213218.CrossRefGoogle ScholarPubMed
Hubel, D. H., & Wiesel, T. N. (1979). Brain mechanisms of vision. Scientific American, 241, 150162.CrossRefGoogle ScholarPubMed
Jamison, K. R. (1993, 02). Psychological issues in the treatment of bipolar disorder. Presented at the meeting entitled Bipolar Disorder: Meeting the Challenge,Keystone, CO. (Abstract)Google Scholar
John, E. R., Tang, Y., Brill, A. B., Young, R., & Ono, K. (1986). Double-labeled metabolic maps of memory. Science, 233, 11671175.CrossRefGoogle ScholarPubMed
Kalin, N. H., Shelton, S. E., & Takahashi, L. K. (1991). Defensive behaviors in infant rhesus mon-keys: Ontogeny and context-dependent selective expression. Child Development, 62, 11751183.CrossRefGoogle ScholarPubMed
Kalivas, P. W., & Stewart, J. (1991). Dopamine transmission in the initiation and expression of drug-and stress-induced sensitization of motor activity. Brain Research Review, 16, 223244.CrossRefGoogle ScholarPubMed
Kandel, E. R. (1993). Genes, synapses and declarative forms of memory. Abstracts of the 146th annual meeting of the American Psychiatric Association. (Abstract)Google Scholar
Keller, M. B. (1990). Diagnostic and course-of-illness variables pertinent to refractory depression. In Tasman, A., Goldfinger, S. M., & Kaufman, C. A. (Eds.), Review of psychiatry (Vol. 9, pp. 1032). Washington, DC: American Psychiatric Press.Google Scholar
King, G. R., Joyner, C., Lee, T., Kuhn, C., & Ellinwood, E. H. Jr. (1992). Intermittent and continuous cocaine administration: Residual behavioral states during withdrawal. Pharmacology, Biochemistry, and Behavior, 43, 243248.CrossRefGoogle ScholarPubMed
Kirkpatrick, B., Kim, J. W., & Insel, T. R. (in press). Limbic system fos expression associated with paternal behavior. Brain Research.Google Scholar
Kraepelin, E. (1921). Manic-depressive insanity and paranoia (Robertson, G. M., Ed.; Barclay, R. M., Trans.). Edinburgh: E. S. Livingstone.CrossRefGoogle Scholar
Kramlinger, K. G., & Post, R. M. (in press). Ultrarapid and ultradian cycling in bipolar affective illness. Archives of General Psychiatry.Google Scholar
Kuhn, C. M., & Schanberg, S. M. (1991). Stimulation in infancy and brain development. In Carroll, B. J. & Barrett, J. E. (Eds.), Psychopathology and the brain (pp. 71101). New York: Raven Press.Google Scholar
LeDoux, J. E., Farb, C. R., & Romanski, L. M. (1991). Overlapping projections to the amygdala and striaturn from auditory processing areas of the thalamus and cortex. Neuroscience Letters, 134, 139144.CrossRefGoogle Scholar
Lidow, M. S., Goldman-Rakic, P. S., & Rakic, P. (1991). Synchronized overproduction of neurotransmitter receptors in diverse regions of the primate cerebral cortex. Proceedings of the National Academy of Sciences USA, 15, 1021810221.CrossRefGoogle Scholar
Lombardino, A., & Nottebaum, F. (1993, 11). Blockade of NMDA receptors in RA disrupts learned vocalizations in adult male zebra finches. Presented at the annual meeting of the Society for Neuroscience,St. Louis, MO. (Abstract)Google Scholar
Lucibello, F. C., Slater, E. P., Jooss, K. U., Beato, M., & Muller, R. (1990). Mutual transrepression of Fos and the glucocorticoid receptor: Involvement of a functional domain in Fos which is absent in FosB. EMBO Journal, 9, 28272834.CrossRefGoogle ScholarPubMed
Maj, M., Pirozzi, R., & Kemali, D. (1989). Long-term outcome of lithium prophylaxis in patients initially classified as complete responders. Psychopharmacology (Berlin), 98, 535538.CrossRefGoogle ScholarPubMed
Marangell, L., George, M., Callahan, A., Pazzaglia, P., Ketter, T., & Post, R. (in press). Intrathecal thyrotropin-releasing hormone in the treatment of affective disorders: Preliminary results of a clinical trial. Collegium Internationale Neuro-Psychopharmacolgicum. (Abstract)Google Scholar
Margolis, R. L., Chuang, D.-M., & Post, R. M. (1994). Programmed cell death: Implications for neuropsychiatric disorders. Biological Psychiatry, 35, 346356.CrossRefGoogle ScholarPubMed
Mayford, M., Barzilai, A., Keller, F., Schacher, S., & Kandel, E. R. (1992). Modulation of an NCAM-related adhesion molecule with long-term synaptic plasticity in aplysia. Science, 256, 638644.CrossRefGoogle ScholarPubMed
McEwen, B. S., Angulo, J., Cameron, H., Chao, H. M., Daniels, D., Gannon, M. N., Gould, E., Mendelson, S., Sakai, R., & Spencer, R. (1992). Paradoxical effects of adrenal steroids on the brain: Protection versus degeneration. Biological Psychiatry, 31, 177199.CrossRefGoogle ScholarPubMed
McKinney, W. T. (1989). Basis of development of animal models in psychiatry: An overview. In Koob, G. F., Ehlers, C. L., & Kupfer, D. J. (Eds.), Animal models of depression (pp. 317). Boston: Birk-hauser.CrossRefGoogle Scholar
McLean, M. J., & Macdonald, R. L. (1986). Carbamazepine and 10, 11-epoxycarbamazepine produce use- and voltage-dependent limitation of rapidly firing action potentials of mouse central neurons in cell culture. Journal of Pharmacology and Experimental Therapeutics, 238, 727738.Google ScholarPubMed
Meaney, M. J., Aitken, D. H., Van Berkel, C., Bhatnagar, S., & Sapolsky, R. M. (1988). Effect of neonatal handling on age-related impairments associated with the hippocampus. Science, 239, 766768.CrossRefGoogle ScholarPubMed
Montgomery, S. A., Roberts, A., & Patel, A. G. (1994). Placebo-controlled efficacy of antidepressants in continuation treatment. International Clinical Psychopharmacology, 9, 4953.CrossRefGoogle ScholarPubMed
Morgan, J. I., & Curran, T. (1990). Inducible protooncogenes of the nervous system: Their contribution to transcription factors and neuroplasticity. Progress in Brain Research, 86, 287294.CrossRefGoogle ScholarPubMed
Nemeroff, C. B., Widerlov, E., & Bissette, G. (1984). Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science, 226, 13421344.CrossRefGoogle ScholarPubMed
Paykel, E. S. (1979). Causal relationship between clinical depression and life events. In Barrett, J. E., Rose, R. M., & Herman, G. L. (Eds.), Stress and mental disorder (pp. 7186). New York: Raven Press.Google Scholar
Paykel, E. S., Prusoff, B. A., & Uhlenhuth, E. H. (1971). Scaling of life events. Archives of General Psychiatry, 25, 340347.CrossRefGoogle ScholarPubMed
Pazzaglia, P. J., & Post, R. M. (1992). Contingent tolerance and re-response to carbamazepine: A case study in a patient with trigeminal neuralgia and bipolar disorder. Journal of Neuropsychiatry and Clinical Neuroscience, 4, 7681.Google Scholar
Pons, T. P., Garraghty, P. E., Ommaya, A. K., Kaas, J. H., et al. (1992). Massive cortical reorganization after sensory deafferentation in adult macaques. Science, 258, 11591160.Google Scholar
Post, R. M. (1990). Prophylaxis of bipolar affective disorders. International Review of Psychiatry, 2, 277320.CrossRefGoogle Scholar
Post, R. M. (1992a). Stress and episode sensitization in recurrent depression. In Racagni, G., Brunello, N., & Fukuda, T. (Eds.), Biological psychiatry (pp. 4951). Amsterdam: Excerpta Medica.Google Scholar
Post, R. M. (1992b). Transduction of psychosocial stress into the neurobiology of recurrent affective disorder. American Journal of Psychiatry, 149, 9991010.Google ScholarPubMed
Post, R. M., Altshuler, L. L., Kettering, A., Denicoff, K., & Weiss, S. R. B. (1991). Antiepileptic drugs in affective illness: Clinical and theoretical implications. In Smith, D. B., Treiman, D. M., & Trimble, M. R. (Eds.), Advances in neurology. Neurobehavioral problems in epilepsy (Vol. 55, pp. 239277). New York: Raven Press.Google Scholar
Post, R. M., Kennedy, C., Shinohara, M., Squillace, K., Miyaoka, M., Suda, S., Ingvar, D. H., & Sokoloff, L. (1984). Metabolic and behavioral consequences of lidocaine-kindled seizures. Brain Research, 324, 295303.CrossRefGoogle ScholarPubMed
Post, R. M., Kopanda, R. T., & Lee, A. (1975). Progressive behavioral changes during chronic lido-caine administration: Relationship to kindling. Life Science, 17, 943950.CrossRefGoogle ScholarPubMed
Post, R. M., Leverich, G. S., Altshuler, L., & Mikalauskas, K. (1992). Lithium discontinuation-induced refractoriness: Preliminary observations. American Journal of Psychiatry, 149, 17271729.Google ScholarPubMed
Post, R. M., Leverich, G. S., Pazzaglia, P. J., Mikalauskas, K., & Denicoff, K. (1993). Lithium tolerance and discontinuation as pathways to refractoriness. In Birch, N. J., Padgham, C., & Hughes, M. S. (Eds.), Lithium in medicine and biology (pp. 7184). Lancashire, UK: Marius Press.Google Scholar
Post, R. M., Leverich, G. S., Rosoff, A. S., & Altshuler, L. L. (1990). Carbamazepine prophylaxis in refractory affective disorders: A focus on long-term follow-up. Journal of Clinical Psychopharmacology, 10, 318327.CrossRefGoogle ScholarPubMed
Post, R. M., Rubinow, D. R., & Ballenger, J. C. (1986). Conditioning and sensitization in the longitudinal course of affective illness. British Journal of Psychiatry, 149, 191201.CrossRefGoogle ScholarPubMed
Post, R. M., & Weiss, S. R. B. (1992). Endogenous biochemical abnormalities in affective illness: Therapeutic vs. pathogenic. Biological Psychiatry, 32, 469484.CrossRefGoogle Scholar
Post, R. M., Weiss, S. R. B., AChuang, D.-M. (1992). Mechanisms of action of anticonvulsants in affective disorders: Comparisons with lithium. Journal of Clinical Psychopharmacology, 12, 23S-35S.CrossRefGoogle ScholarPubMed
Post, R. M., Weiss, S. R. B., Fontana, D., & Pert, A. (1992). Conditioned sensitization to the psychomotor stimulant cocaine. Annals of the New York Academy of Science, 654, 386399.CrossRefGoogle Scholar
Post, R. M., Weiss, S. R. B., & Pert, A. (1987). The role of context in conditioning and behavioral sensitization to cocaine. Psychopharmacology Bulletin, 23, 425429.Google ScholarPubMed
Post, R. M., Weiss, S. R. B., & Smith, M. (in press). Sensitization and kindling: Implications for the involving substrate of PTSD. In Friedman, M. J., Charney, D. S., & Deutch, A. Y. (Eds.), Neurobiology and clinical consequences of stress: From normal adaptation to PTSD. New York: Raven Press.Google Scholar
Post, R. M., Weiss, S. R. B., Uhde, T. W., Clark, M., & Rosen, J. B. (1993). Implications of cocaine kindling, induction of the proto-oncogene c-fos and contingent tolerance. In Hoehn-Saric, R. (Ed.), Biology of anxiety disorders (pp. 121175). Washington, DC: APA Press.Google Scholar
Putnam, F. W. (1993). Dissociative disorders in children: Behavioral profiles and problems. Child Abuse and Neglect, 17, 3945.CrossRefGoogle ScholarPubMed
Racine, R. (1978). Kindling: The first decade. Neurosurgery, 3, 234252.CrossRefGoogle ScholarPubMed
Rakic, P., Bourgeois, J.-P., Eckenhoff, M. F., Zecevic, N., & Goldman-Rakic, P. S. (1986). Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science, 232, 232234.CrossRefGoogle ScholarPubMed
Rivier, C., & Vale, W. (1987). Cocaine stimulates adrenocorticotropin (ACTH) secretion through a corticotropin-releasing factor (CRF)-mediated mechanism. Brain Research, 422, 403406.CrossRefGoogle ScholarPubMed
Rolls, E. T. (1984). Neurons in the cortex of the temporal lobe and in the amygdala of the monkey with responses selective for faces. Human Neurobiology, 3, 209222.Google ScholarPubMed
Rose, S. P. (1991). How chicks make memories: The cellular cascade from c-fos to dendritic remodelling. Trends in Neuroscience, 14, 390397.CrossRefGoogle ScholarPubMed
Rosen, J. B., Abramowitz, J., & Post, R. M. (1993). Co-localization of TRH mRNA and Fos-like immunoreactivity in limbic structures following amygdala kindling. Molecular and Cellular Neuro-sciences, 4, 335342.CrossRefGoogle Scholar
Rosen, J. B., Weiss, S. R. B., & Post, R. M. (1994). Contingent tolerance to carbamazepine: Alterations in TRH mRNA and TRH receptor binding in limbic structures. Brain Research, 651, 252260.CrossRefGoogle ScholarPubMed
Roy-Byrne, P. P., Uhde, T. W., Post, R. M., & Joffe, R. T. (1984). Relationship of response to sleep deprivation and carbamazepine in depressed patients. Acta Psychiatrics Scandinavica, 69, 379382.CrossRefGoogle ScholarPubMed
Sapolsky, R. M., & Pulsinelli, W. A. (1985). Glucocorticoids potentiate ischemic injury to neurons: Therapeutic implications. Science, 229, 13971400.CrossRefGoogle ScholarPubMed
Smith, M. A., Makino, S., Kvetnansky, R., & Post, R. M. (1993). Stress alters brain derived neurotrophic factor and neurotrophin-3 mRNA levels in the hippocampus. Society for Neuroscience Abstracts, 19, 866. (Abstract)Google Scholar
Smith, M. A., Makino, M. A., Kvetnansky, R., & Post, R. M. (in press). Stress alters the expression of brain-derived neurotropic factor and neurotropin-3 mRNAs in the hippocampus. Journal of Neuroscience.Google Scholar
Stoddard, R. J., Post, R. M., & Bunney, W. E. Jr. (1977). Slow and rapid psychobiological alterations in a manic-depressive patient: Clinical phenomenology. British Journal of Psychiatry, 130, 7278.CrossRefGoogle Scholar
Suppes, T., Baldessarini, R. J., Faedda, G. I., & Tohen, M. (1991). Risk of recurrence following dis-continuation of lithium treatment in bipolar disorder. Archives of General Psychiatry, 48, 10821088.CrossRefGoogle Scholar
Sutula, T. P., Golarai, G., & Cavazos, J. (1992). Assessing the functional significance of mossy fiber sprouting. Epilepsy Research Supplement, 7, 251259.Google ScholarPubMed
Terr, L. C. (1991). Effects of childhood trauma are far-reaching. Grand Rounds Review, see notes.Google Scholar
Thase, M. E. (1990). Relapse and recurrence in unipolar major depression: Short-term and long-term approaches. Journal of Clinical Psychiatry, 51, 5157.Google ScholarPubMed
Touray, M., Ryan, F., Saurer, S., Martin, F., & Jaggi, R. (1991). fos-induced inhibition of glucocorticoid receptor function is mediated by Fos. Oncogene, 6, 211217.Google Scholar
Vinson, C. R., Sigler, P. B., & McKnight, S. L. (1989). Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science, 246, 911916.CrossRefGoogle ScholarPubMed
Wallace, C. S., Kilman, V. L., Withers, G. S., & Greenough, W. T. (1992). Increases in dendritic length in occipital cortex after 4 days of differential housing in weanling rats. Behavioral and Neural Biology, 58, 6468.CrossRefGoogle ScholarPubMed
Weiss, S. R. B., Clark, M., Rosen, J. B., Smith, M. A., & Post, R. M. (1994). Contingent tolerance to the anticonvulsant effects of carbamazepine: Relationship to loss of endogenous adaptive mechanisms. Manuscript submitted for publication.Google Scholar
Weiss, S. R. B., Haas, K., & Post, R. M. (1991). Contingent tolerance to carbamazepine is associated with lowering of amygdala-kindled seizure thresholds. Experimental Neurology, 114, 300306.CrossRefGoogle ScholarPubMed
Weiss, S. R. B., & Post, R. M. (1990). Contingent tolerance to the anticonvulsant effects of carbamaze-pine: Implications for neurology and psychiatry. In Ganger, R., Sacchetti, E., Perini, G. I., & Canevini, M. P. (Eds.), Carbamazepine: A bridge between epilepsy and psychiatric disorders (pp. 732). Origgio, Italy: Ciba-Geigy Edizioni.Google Scholar
Weiss, S. R. B., & Post, R. M. (1991a). Contingent tolerance to carbamazepine: A peripheral-type benzodiazepine mechanism. European Journal of Pharmacology, 193, 159163.CrossRefGoogle ScholarPubMed
Weiss, S. R. B., & Post, R. M. (1991b). Development and reversal of conditioned inefficacy and tolerance to the anticonvulsant effects of carbamazepine. Epilepsia, 32, 140145.CrossRefGoogle Scholar
Weiss, S. R. B., & Post, R. M. (in press). Caveats in the use of the kindling model of affective disorders. Journal of Toxicology and Industrial Health.Google Scholar
Weiss, S. R. B., Post, R. M., Pert, A., Woodward, R., & Murman, D. (1989). Context-dependent cocaine sensitization: Differential effect of haloperidol on development versus expression. Pharmacology, Biochemistry, and Behavior, 34, 655661.CrossRefGoogle ScholarPubMed
White, F. J., Henry, D. J., Hu, X.-T., Jeziorski, M., & Ackerman, J. M. (1992). Electrophysiological effects of cocaine in the mesoaccumbens dopamine system. In Lakoski, J. M., Galloway, M. P., & White, F. J. (Eds.), Cocaine: Pharmacology, physiology and clinical strategies (pp. 261293). West Cald-well, NJ: Telford Press.Google Scholar
Wu, J. C., & Bunney, W. E. (1990). The biological basis of an antidepressant response to sleep deprivation and relapse: Review and hypothesis. American Journal of Psychiatry, 147, 1421.Google ScholarPubMed
Yang-Yen, H. F., Chambard, J. C., Sun, Y. L., Smeal, T., Schmidt, T. J., Drouin, J., & Karin, M. (1990). Transcriptional interference between c-Jun and the glucocorticoid receptor: Mutual inhibition of DNA binding due to direct protein-protein interaction. Cell, 62, 12051215.CrossRefGoogle ScholarPubMed