Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T18:46:31.091Z Has data issue: false hasContentIssue false

Prenatal maternal stress from a natural disaster predicts dermatoglyphic asymmetry in humans

Published online by Cambridge University Press:  01 April 2009

Suzanne King*
Affiliation:
Douglas Hospital Research Centre McGill University
Adham Mancini-Marïe
Affiliation:
Fernand-Séguin Research Centre
Alain Brunet
Affiliation:
Douglas Hospital Research Centre McGill University
Elaine Walker
Affiliation:
Emory University
Michael J. Meaney
Affiliation:
Douglas Hospital Research Centre McGill University
David P. Laplante
Affiliation:
Douglas Hospital Research Centre
*
Address correspondence and reprint requests to: Suzanne King, Douglas Hospital Research Centre, 6875 LaSalle Boulevard, Verdun, Quebec H4H 1R3, Canada; E-mail: suzanne.king@douglas.mcgill.ca.

Abstract

Dermatoglyphic asymmetry of fingertip ridge counts is more frequent in schizophrenia patients than normal controls, and may reflect disruptions in fetal development during Weeks 14–22 when fingerprints develop. However, there are no data in humans linking specific adverse events at specific times to dermatoglyphic asymmetries. Our objective was to determine whether prenatal exposure to a natural disaster (1998 Quebec ice storm) during Weeks 14–22 would result in increased dermatoglyphic asymmetry in children, and to determine the roles of maternal objective stress exposure, subjective stress reaction, and postdisaster cortisol. Ridge counts for homologous fingers were scored for 77 children (20 target exposed [Weeks 14–22] and 57 nontarget exposed [exposed during other gestation weeks]). Children in the target group had more than 0.50 SD greater asymmetry than the nontarget group. Within the target group, children whose mothers had high subjective ice storm stress had significantly greater asymmetry than those with lower stress mothers, and maternal postdisaster cortisol had a significant negative correlation with the children's dermatoglyphic asymmetry (r = −.56). Prenatal maternal stress during the period of fingerprint development results in greater dermatoglyphic asymmetry in their children, especially in the face of greater maternal distress.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anisman, H., Griffiths, J., Matheson, K., Ravindran, A. V., & Merali, Z. (2001). Posttraumatic stress symptoms and salivary cortisol levels. American Journal of Psychiatry, 158, 15091511.CrossRefGoogle ScholarPubMed
Babler, W. J. (1978). Prenatal development of dermatoglyphic digital patterns: Associations with epidermal ridge, volar pad and bone morphology. Collegium Antropologicum, 11, 297303.Google Scholar
Baron, R. H., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51, 11731182.CrossRefGoogle ScholarPubMed
Braehler, C., Holowka, D., Brunet, A., Beaulieu, S., Baptista, T., Debruille, J. B., et al. (2005). Diurnal cortisol in schizophrenia patients with childhood trauma. Schizophrenia Research, 79, 353354.CrossRefGoogle ScholarPubMed
Bromet, E., & Dew, M. A. (1995). Review of psychiatric epidemiologic research on disasters. Epidemiologic Reviews, 17, 113119.CrossRefGoogle ScholarPubMed
Brunet, A., St-Hilaire, A., Jehel, L., & King, S. (2003). Validation of a French version of the Impact of Event Scale—Revised. Canadian Journal of Psychiatry, 48, 5560.CrossRefGoogle ScholarPubMed
Davis Weinstein, D., Diforio, D., Shiffman, J., Walker, E., & Bonsall, R. (1999). Minor physical anomalies, dermatoglyphic asymmetries, and cortisol levels in adolescents with schizotypal personality disorder. American Journal of Psychiatry, 156, 617623.CrossRefGoogle Scholar
DeMyer, M. K., Gilmor, R. L., Hendrie, H. C., DeMyer, W. E., Augustyn, G. T., & Jackson, R. K. (1988). Magnetic resonance brain images in schizophrenic and normal subjects: Influence of diagnosis and education. Schizophrenia Bulletin, 14, 2137.CrossRefGoogle ScholarPubMed
Glynn, L. M., Wadhwa, P. D., Dunkel Schetter, C., Chicz-Demet, A., & Sandman, C. A. (2001). When stress happens matters: Effects of earthquake timing on stress responsivity in pregnancy. American Journal of Obstetrics and Gynecology, 184, 637642.CrossRefGoogle ScholarPubMed
Green, M. F., Bracha, H. S., Satz, P., & Christenson, C. D. (1994). Preliminary evidence for an association between minor physical anomalies and second trimester neurodevelopment in schizophrenia. Psychiatry Research, 53, 119127.CrossRefGoogle ScholarPubMed
Holt, S. B. (1968). The Genetics of Dermal Ridges. Springfield, IL: Thomas.Google Scholar
Huttenen, M. O., & Niskanen, P. (1978). Prenatal loss of father and psychiatric disorders. Archives of General Psychiatry, 35, 429431.CrossRefGoogle Scholar
Ismail, B., Cantor-Graae, E., & McNeil, T. F. (1998). Minor physical anomalies in schizophrenic patients and their siblings. American Journal of Psychiatry, 155, 16951702.CrossRefGoogle ScholarPubMed
Kelly, B. D., Kotter, D., Denihan, C., Larkin, D., Murphy, P., Kinsella, A., et al. (2004). Neurological soft signs and dermatoglyphic anomalies in twins with schizophrenia. European Psychiatry: The Journal of the Association of European Psychiatrists, 19, 159163.CrossRefGoogle ScholarPubMed
King, S., Laplante, D., & Joober, R. (2005). Understanding putative risk factors for schizophrenia: Retrospective and prospective studies. Journal of Psychiatry and Neuroscience, 30, 342348.Google ScholarPubMed
Laplante, D. P., Barr, R. G., Brunet, A., Galbaud du Fort, G., Meaney, M., Saucier, J.-F., et al. (2004). Stress during pregnancy affects intellectual and linguistic functioning in human toddlers. Pediatric Research, 56, 400410.CrossRefGoogle Scholar
Laplante, D. P., Zelazo, P. R., Brunet, A., & King, S. (2007). Functional play at 2 years of age: Effects of prenatal maternal stress. Infancy, 12, 6993.CrossRefGoogle ScholarPubMed
Lou, H. C., Nordentoft, M., Jensen, F., Pryds, O., Nim, J., & Hemmingsen, R. (1992). Psychosocial stress and severe prematurity. Lancet, 340, 54.CrossRefGoogle ScholarPubMed
Markow, T. A., & Wandler, K. (1986). Fluctuating dermatoglyphic asymmetry and the genetics of liability to schizophrenia. Psychiatry Research, 19, 323328.CrossRefGoogle ScholarPubMed
Matthews, S. G. (2002). Early programming of the hypothalamo–pituitary–adrenal axis. Trends in Endocrinology and Metabolism, 13, 373380.CrossRefGoogle ScholarPubMed
McFarlane, A. C. (1988). Relationship between psychiatric impairment and a natural disaster: The role of distress. Psychological Medicine, 18, 129139.CrossRefGoogle Scholar
Mellor, C. S. (1992). Dermatoglyphic evidence of fluctuating asymmetry in schizophrenia. British Journal of Psychiatry, 160, 467472.CrossRefGoogle ScholarPubMed
Murthy, R. S., & Wig, N. N. (1977). Dermatoglyphics in schizophrenia: the relevance of positive family history. British Journal of Psychiatry, 130, 5658.CrossRefGoogle ScholarPubMed
Newell-Morris, L. L., Fahrenbruch, C. E., & Sackett, G. P. (1989). Prenatal psychological stress, dermatoglyphic asymmetry and pregnancy outcome in the pigtailed macaque (Macaca nemestrina). Biology of the Neonate, 56, 6175.CrossRefGoogle ScholarPubMed
Pitman, R. K., & Orr, S. P. (1990). Twenty-four hour urinary cortisol and catecholamine excretion in combat-related posttraumatic stress disorder. Biological Psychiatry, 27, 245247.CrossRefGoogle ScholarPubMed
Reilly, J. L., Murphy, P. T., Byren, M., Larkin, C., Gill, M., O'Callaghan, E., et al. (2001). Dermatoglyphic fluctuating asymmetry and atypical handedness in schizophrenia. Schizophrenia Research, 50, 159168.CrossRefGoogle ScholarPubMed
Rubin, P., Vorstrup, S., Hemmingsen, R., Andersen, H. S., Bendsen, B. B., Stromso, N., et al. (1994). Neurological abnormalities in patients with schizophrenia or schizophreniform disorder at first admission to hospital: Correlations with computerized tomography and regional cerebral blood flow findings. Acta Psychiatrica Scandinavica, 90, 385390.CrossRefGoogle ScholarPubMed
Schneider, M. L. (1992). Delayed object permanence development in prenatally stressed rhesus monkey infants (Macaca mulatta). Occupational Therapy Journal of Research, 12, 96110.CrossRefGoogle Scholar
Seckl, J. R. (2001). Glucocorticoid programming of the fetus; adult phenotypes and molecular mechanisms. Molecular and Cellular Endocrinology, 185, 6171.CrossRefGoogle ScholarPubMed
Takahashi, L. K. (1998). Prenatal stress: Consequences of glucocorticoids on hippocampal development and function. International Journal of Developmental Neuroscience, 16, 199207.CrossRefGoogle Scholar
Tarrant, J. C., & Jones, P. B. (1999). Precursors to schizophrenia: Do biological markers have specificity? Canadian Journal of Psychiatry, 44, 335349.CrossRefGoogle ScholarPubMed
Trautman, P. D., Meyer-Bahlburg, H. F. L., Postelnek, J., & New, M. I. (1995). Effects of early prenatal dexamethasone on the cognitive and behavioral development of young children: Results of a pilot study. Psychoneuroendocrinology, 10, 439449.CrossRefGoogle Scholar
Uno, H., Tarara, R., Else, J., Sulemen, M., & Sapolsky, R. M. (1989). Hippocampal damage associated with prolonged and fatal stress in primates. Journal of Neuroscience, 9, 17051711.CrossRefGoogle ScholarPubMed
Uno, H. S., Eisle, S., Sakai, A., Shelton, S., Baker, E., DeJesus, O., et al. (1994). Neurotoxicity of glucocorticoids in the primate brain. Hormones and Behavior, 28, 336348.CrossRefGoogle ScholarPubMed
van Oel, C. J., Baare, W. F., Hulshoff Pol, H. E., Haag, J., Balazs, J., Dingemans, A., et al. (2001). Differentiating between low and high susceptibility to schizophrenia in twins: The significance of dermatoglyphic indices in relation to other determinants of brain development. Schizophrenia Research, 52, 181193.CrossRefGoogle ScholarPubMed
Van Os, J., & Selten, J.-P. (1998). Prenatal exposure to maternal stress and subsequent schizophrenia. The May 1940 invasion of The Netherlands. British Journal of Psychiatry, 172, 324326.CrossRefGoogle ScholarPubMed
van Valen, L. A. (1962). A study of fluctuating asymmetry. Evolution, 16, 125142.CrossRefGoogle Scholar
Weinberger, D. R. (1995). Schizophrenia as a neurodevelopmental disorder. In Hirsch, S. R. & Weinberger, D. R. (Eds.), Schizophrenia. Oxford: Blackwell Science.Google ScholarPubMed
Weinberger, D. R., & Wyatt, R. J. (1982). Cerebral ventricular biological marker for sub-typing chronic schizophrenia. In Usdin, E. E. (Ed.), Biological markers in psychiatry (pp. 505512). Oxford: Pergamon Press.CrossRefGoogle Scholar
Weinstein, D. D., Diforio, D., Schiffman, J., Walker, E., & Bonsall, R. (1999). Minor physical anomalies, dermatoglyphic asymmetries, and cortisol levels in adolescents with schizotypal personality disorder. American Journal of Psychiatry, 156, 617623.CrossRefGoogle ScholarPubMed
Weinstock, M. (2001). Alterations induced by gestational stress in brain morphology and behaviour of the offspring. Progress in Neurobiology, 65, 427451.CrossRefGoogle ScholarPubMed
Weiss, D. S., & Marmar, C. R. (1997). The Impact of Event Scale—Revised. New York: Guilford Press.Google Scholar
Yehuda, R. (2002). Current status of cortisol findings in post-traumatic stress disorder. Psychiatric Clinics of North America, 25, 341368.CrossRefGoogle ScholarPubMed
Yehuda, R., Resnick, H. S., Schmeidler, J., Yang, R. K., & Pitman, R. K. (1998). Predictors of cortisol and 3-methoxy-4-hydroxyphenylglycol responses in the acute aftermath of rape. Biological Psychiatry, 43, 855859.CrossRefGoogle ScholarPubMed
Young, E. A., & Breslau, N. (2004). Saliva cortisol in posttraumatic stress disorder: A community epidemiologic study. Biological Psychiatry, 56, 205209.CrossRefGoogle ScholarPubMed