Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T20:31:57.376Z Has data issue: false hasContentIssue false

Neural meaning making, prediction, and prefrontal–subcortical development following early adverse caregiving

Published online by Cambridge University Press:  11 January 2021

Nim Tottenham*
Affiliation:
Columbia University, Department of Psychology
*
Author for Correspondence: Nim Tottenham, Columbia University, 1190 Amsterdam Avenue, MC 5501, New York, NY10027, E-mail: nlt7@columbia.edu.

Abstract

Early adversities that are caregiving-related (crEAs) are associated with a significantly increased risk for mental health problems. Recent neuroscientific advances have revealed alterations in medial prefrontal cortex (mPFC)-subcortical circuitry following crEAs. While this work has identified alterations in affective operations (e.g., perceiving, reacting, controlling, learning) associated with mPFC–subcortical circuitry, this circuitry has a much broader function extending beyond operations. It plays a primary role in affective meaning making, involving conceptual-level, schematized knowledge to generate predictions about the current environment. This function of mPFC–subcortical circuitry motivates asking whether mPFC–subcortical phenotypes following crEAs support semanticized knowledge content (or the concept-level knowledge) and generate predictive models. I present a hypothesis motivated by research findings across four different lines of work that converge on mPFC–subcortical neuroanatomy, including (a) the neurobiology supporting emotion regulation processes in adulthood, (b) the neurobiology that is activated by caregiving cues during development, (c) the neurobiology that is altered by crEAs, and (d) the neurobiology of semantic-based meaning making. I hypothesize that the affective behaviors following crEAs result in part from affective semantic memory processes supported by mPFC–subcortical circuitry that over the course of development, construct affective schemas that generate meaning making and guide predictions. I use this opportunity to review some of the literature on mPFC–subcortical circuit development following crEAs to illustrate the motivation behind this hypothesis. Long recognized by clinical science and cognitive neuroscience, studying schema-based processes may be particularly helpful for understanding how affective meaning making arises from developmental trajectories of mPFC–subcortical circuitry.

Type
Special Section 1: 2019 Minnesota Symposium on Child Psychology
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al Ain, S., Perry, R. E., Nunez, B., Kayser, K., Hochman, C., Brehman, E., … Sullivan, R. M. (2017). Neurobehavioral assessment of maternal odor in developing rat pups: Implications for social buffering. Social Neuroscience, 12, 3249. doi:10.1080/17470919.2016.1159605CrossRefGoogle ScholarPubMed
Andersen, S. L., & Teicher, M. (2008). Stress, sensitive periods and maturational events in adolescent depression. Trends in Neuroscience, 31, 183191. doi:10.1016/j.tins.2008.01.004CrossRefGoogle ScholarPubMed
Andersen, S. L., Tomada, A., Vincow, E. S., Valente, E., Polcari, A., & Teicher, M. H. (2008). Preliminary evidence for sensitive periods in the effect of childhood sexual abuse on regional brain development. Journal of Neuropsychiatry and Clinical Neurosciences, 20, 292301. doi:10.1176/appi.neuropsych.20.3.292CrossRefGoogle ScholarPubMed
Anderson, S. L., & Teicher, M. H. (2004). Delayed effects of early stress on hippocampal development. Neuropsychopharmacology, 29, 19881993. doi:10.1038/sj.npp.1300528CrossRefGoogle Scholar
Aurell, C. G. (1979). Perception: A model comprising two modes of consciousness. Perceptual and Motor Skills, 49, 431444. doi:10.2466/pms.1979.49.2.431CrossRefGoogle Scholar
Ayduk, O., Downey, G., & Kim, M. H. (2001). Rejection sensitivity and depressive symptoms in women. Personality and Social Psychology Bulletin, 27, 868877. doi:10.1177/0146167201277009CrossRefGoogle Scholar
Baldassano, C., Hasson, U., & Norman, K. A. (2018). Representation of real-world event schemas during Narrative Perception. Journal of Neuroscience, 38, 96899699. doi:10.1523/JNEUROSCI.0251-18.2018CrossRefGoogle ScholarPubMed
Baram, T. Z., Davis, E. P., Obenaus, A., Sandman, C. A., Small, S. L., Solodkin, A., & Stern, H. (2012). Fragmentation and unpredictability of early-life experience in mental disorders. American Journal of Psychiatry, 169, 907915. doi:10.1176/appi.ajp.2012.11091347CrossRefGoogle ScholarPubMed
Barbas, H., & García-Cabezas, . (2016). How the prefrontal executive got its stripes. Current Opinion in Neurobiology, 40, 125134. doi:10.1016/j.conb.2016.07.003CrossRefGoogle ScholarPubMed
Barrett, L. F., & Simmons, W. K. (2015). Interoceptive predictions in the brain. Nature Reviews Neuroscience, 16, 419429. doi:10.1038/nrn3950CrossRefGoogle Scholar
Bath, K. G., Manzano-Nieves, G., & Goodwill, H. (2016). Early life stress accelerates behavioral and neural maturation of the hippocampus in male mice. Hormones and Behavior, 82, 6471. doi:10.1016/j.yhbeh.2016.04.010CrossRefGoogle ScholarPubMed
Bechara, A., Damasio, H., & Damasio, A. R. (2000). Emotion, decision making and the orbitofrontal cortex. Cerebral Cortex, 10, 295307. doi:10.1093/cercor/10.3.295CrossRefGoogle ScholarPubMed
Beebe, B., Jaffe, J., Markese, S., Buck, K., Chen, H., Cohen, P., … Feldstein, S. (2010). The origins of 12-month attachment: A microanalysis of 4-month mother-infant interaction. Attachment and Human Development, 12, 3141. doi:10.1080/14616730903338985CrossRefGoogle ScholarPubMed
Beebe, B., & Steele, M. (2013). How does microanalysis of mother–infant communication inform maternal sensitivity and infant attachment? Attachment and Human development, 15, 583602. doi:10.1080/14616734.2013.841050CrossRefGoogle ScholarPubMed
Belsky, J., Spritz, B., & Crnic, K. (1996). Infant attachment security and affective-cognitive information processing at age 3. Psychological Science, 7, 111114. doi:10.1111/j.1467-9280.1996.tb00339.xCrossRefGoogle Scholar
Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19, 27672796. doi:10.1093/cercor/bhp055CrossRefGoogle ScholarPubMed
Blaze, J., & Roth, T. L. (2013). Exposure to caregiver maltreatment alters expression levels of epigenetic regulators in the medial prefrontal cortex. International Journal of Developmental Neuroscience, 31, 804810. doi:10.1016/j.ijdevneu.2013.10.001CrossRefGoogle ScholarPubMed
Bock, J., Riedel, A., & Braun, K. (2012). Differential changes of metabolic brain activity and interregional functional coupling in prefronto-limbic pathways during different stress conditions: Functional imaging in freely behaving rodent pups. Frontiers in Cellular Neuroscience, 6, 19. doi:10.3389/fncel.2012.00019CrossRefGoogle ScholarPubMed
Bolton, J. L., Molet, J., Regev, L., Chen, Y., Rismanchi, N., Haddad, E., … Baram, T. Z. (2017). Anhedonia following early-life adversity involves aberrant interaction of reward and anxiety circuits and is reversed by partial silencing of amygdala corticotropin-releasing hormone gene. Biological Psychiatry, 83(2), 137–147. doi:10.1016/j.biopsych.2017.08.023CrossRefGoogle Scholar
Bowlby, J. (1969). Attachment and loss. New York: Basic Books.Google Scholar
Bowlby, J. (1973). Attachment and loss: Volume II: Separation, anxiety and anger. London: The Hogarth Press and the Institute of Psycho-Analysis.Google Scholar
Bretherton, I. (1992). The origins of attachment theory: John Bowlby and Mary Ainsworth. Developmental Psychology, 28, 759775. doi:10.1037/0012-1649.28CrossRefGoogle Scholar
Brown, G. W., Andrews, B., Harris, T., Adler, Z., & Bridge, L. (1986). Social support, self-esteem and depression. Psychological Medicine, 16, 813831. doi:10.1017/s0033291700011831CrossRefGoogle ScholarPubMed
Cabeza de Baca, T., Barnett, M. A., & Ellis, B. J. (2016). The development of the child unpredictability schema: Regulation through maternal life history trade-offs. Evolutionary Behavioral Sciences, 10, 4355. doi:10.1037/ebs0000056CrossRefGoogle Scholar
Callaghan, B. L., Gee, D. G., Gabard-Durnam, L., Telzer, E. H., Humphreys, K. L., Goff, B., … Tottenham, N. (2019b). Decreased amygdala reactivity to parent cues protects against anxiety following early adversity: An examination across 3 years. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 4, 664671. doi:10.1016/j.bpsc.2019.02.001Google Scholar
Callaghan, B., Meyer, H., Opendak, M., Van Tieghem, M., Harmon, C., Li, A., … Tottenham, N. (2019a). Using a developmental ecology framework to align fear neurobiology across species. Annual Reviews in Clinical Psychology, 15, 345369. doi:10.1146/annurev-clinpsy-050718-095727CrossRefGoogle Scholar
Callaghan, B. L., & Richardson, R. (2011). Maternal separation results in early emergence of adult-like fear and extinction learning in infant rats. Behavioral Neuroscience, 125, 2028. doi:10.1037/a0022008CrossRefGoogle ScholarPubMed
Callaghan, B. L., & Richardson, R. (2012). The effect of adverse rearing environments on persistent memories in young rats: Removing the brakes on infant fear memories. Translational Psychiatry, 2, e138. doi:10.1038/tp.2012.65CrossRefGoogle ScholarPubMed
Callaghan, B. L., & Richardson, R. (2014). Early emergence of adult-like fear renewal in the developing rat after chronic corticosterone treatment of the dam or the pups. Behavioral Neuroscience, 128, 594602. doi:10.1037/bne0000009CrossRefGoogle ScholarPubMed
Callaghan, B. L., & Tottenham, N. (2016). The stress acceleration hypothesis: effects of early-life adversity on emotion circuits and behavior. Current Opinion in Behavioral Sciences, 7, 76–81. doi:10.1016/j.cobeha.2015.11.018CrossRefGoogle ScholarPubMed
Chocyk, A., Majcher-Maslanka, I., Dudys, D., Przyborowska, A., & Wedzony, K. (2013). Impact of early-life stress on the medial prefrontal cortex functions - a search for the pathomechanisms of anxiety and mood disorders. Pharmacological Reports, 65, 14621470. doi:10.1016/s1734-1140(13)71506-8CrossRefGoogle ScholarPubMed
Choi, J., Jeong, B., Rohan, M. L., Polcari, A. M., & Teicher, M. H. (2009). Preliminary evidence for white matter tract abnormalities in young adults exposed to parental verbal abuse. Biological Psychiatry, 65, 227234. doi:10.1016/j.biopsych.2008.06.022CrossRefGoogle ScholarPubMed
Cicchetti, D. (2002). The impact of social experience on neurobiological systems: Illustration from a constructivist view of child maltreatment. Cognitive Development, 17, 14071428. doi:10.1016/S0885-2014(02)00121-1CrossRefGoogle Scholar
Cicchetti, D., & Blender, J. A. (2004). A multiple-levels-of-analysis approach to the study of developmental processes in maltreated children. Proceedings of the National Academy of Sciences U S A, 101, 1732517326. doi:10.1073/pnas.0408033101CrossRefGoogle Scholar
Cicchetti, D., & Doyle, C. (2016). Child maltreatment, attachment and psychopathology: Mediating relations. World Psychiatry, 15, 8990. doi:10.1002/wps.20337CrossRefGoogle ScholarPubMed
Cicchetti, D., & Rogosch, F. A. (1996). Equifinality and multifinality in developmental psychopathology. Development and Psychopathology, 8, 597600. doi:10.1017/S0954579400007318CrossRefGoogle Scholar
Clark, C., Caldwell, T., Power, C., & Stansfeld, S. A. (2010). Does the influence of childhood adversity on psychopathology persist across the lifecourse? A 45-year prospective epidemiologic study. Annals of Epidemiology, 20, 385394. doi:10.1016/j.annepidem.2010.02.008CrossRefGoogle ScholarPubMed
Cohen, R. A., Grieve, S., Hoth, K. F., Paul, R. H., Sweet, L., Tate, D., … Williams, L. M. (2006). Early life stress and morphometry of the adult anterior cingulate cortex and caudate nuclei. Biological Psychiatry, 59, 975982. doi:10.1016/j.biopsych.2005.12.016CrossRefGoogle ScholarPubMed
Colquitt, J. A., Scott, B. A., & LePine, J. A. (2007). Trust, trustworthiness, and trust propensity: A meta-analytic test of their unique relationships with risk taking and job performance. Journal of Applied Psychology, 92, 909927. doi:10.1037/0021-9010.92.4.909CrossRefGoogle ScholarPubMed
Conner, O. L., Siegle, G. J., McFarland, A. M., Silk, J. S., Ladouceur, C. D., Dahl, R. E., … Ryan, N. D. (2012). Mom-it helps when you're right here! Attenuation of neural stress markers in anxious youths whose caregivers are present during fMRI. PLoS One, 7, e50680. doi:10.1371/journal.pone.0050680CrossRefGoogle ScholarPubMed
De Bellis, M. D., Keshavan, M. S., Shifflett, H., Iyengar, S., Beers, S. R., Hall, J., & Moritz, G. (2002). Brain structures in pediatric maltreatment-related posttraumatic stress disorder: A sociodemographically matched study. Biological Psychiatry, 52, 10661078. doi:10.1016/s0006-3223(02)01459-2CrossRefGoogle ScholarPubMed
DeCasper, A. J., & Carstens, A. A. (1981). Contingencies of stimulation: Effects on learning and emotion in neonates. Infant Behavior and Development, 4, 1935. doi:10.1016/S0163-6383(81)80004-5CrossRefGoogle Scholar
Dehaene-Lambertz, G., Montavont, A., Jobert, A., Allirol, L., Dubois, J., Hertz-Pannier, L., & Dehaene, S. (2010). Language or music, mother or Mozart? Structural and environmental influences on infants’ language networks. Brain and Language, 114, 5365. doi:10.1016/j.bandl.2009.09.003CrossRefGoogle ScholarPubMed
Dennison, M. J., Rosen, M. L., Sambrook, K. A., Jenness, J. L., Sheridan, M. A., & McLaughlin, K. A. (2019). Differential associations of distinct forms of childhood adversity with neurobehavioral measures of reward processing: A developmental pathway to depression. Child Development, 90, e96e113. doi:10.1111/cdev.13011CrossRefGoogle ScholarPubMed
DePasquale, C. E., Raby, K. L., Hoye, J., & Dozier, M. (2018). Parenting predicts Strange Situation cortisol reactivity among children adopted internationally. Psychoneuroendocrinology, 89, 8691. doi:10.1016/j.psyneuen.2018.01.003CrossRefGoogle ScholarPubMed
Dikker, S., & Pylkkanen, L. (2013). Predicting language: MEG evidence for lexical preactivation. Brain and Language, 127, 5564. doi:10.1016/j.bandl.2012.08.004CrossRefGoogle ScholarPubMed
Ditzen, B., Neumann, I. D., Bodenmann, G., von Dawans, B., Turner, R. A., Ehlert, U., & Heinrichs, M. (2007). Effects of different kinds of couple interaction on cortisol and heart rate responses to stress in women. Psychoneuroendocrinology, 32, 565574. doi:10.1016/j.psyneuen.2007.03.011CrossRefGoogle ScholarPubMed
Drury, S. S., Sanchez, M. M., & Gonzalez, A. (2016). When mothering goes awry: Challenges and opportunities for utilizing evidence across rodent, nonhuman primate and human studies to better define the biological consequences of negative early caregiving. Hormones and Behavior, 77, 182192. doi:10.1016/j.yhbeh.2015.10.007CrossRefGoogle ScholarPubMed
Duncan, K. D., & Shohamy, D. (2016). Memory states influence value-based decisions. Journal of Experimental Psychology: General, 145, 14201426. doi:10.1037/xge0000231CrossRefGoogle ScholarPubMed
Edwards, V. J., Holden, G. W., Felitti, V. J., & Anda, R. F. (2003). Relationship between multiple forms of childhood maltreatment and adult mental health in community respondents: Results from the adverse childhood experiences study. American Journal of Psychiatry, 160, 14531460. doi:10.1176/appi.ajp.160.8.1453CrossRefGoogle ScholarPubMed
Ellis, B. J., & Del Giudice, M. (2014). Beyond allostatic load: Rethinking the role of stress in regulating human development. Development and Psychopathology, 26, 120. doi:10.1017/S0954579413000849CrossRefGoogle ScholarPubMed
Ellsworth, P. C., & Scherer, K. R. (2003). Appraisal processes in emotion. In Davidson, K. R. S. R. J. & Goldsmith, H. H. (Eds.), Series in affective science. Handbook of affective sciences (pp. 572595). Oxford University Press.Google Scholar
Etkin, A., Egner, T., & Kalisch, R. (2011). Emotional processing in anterior cingulate and medial prefrontal cortex. Trends in Cognitive Sciences, 15, 8593. doi:10.1016/j.tics.2010.11.004CrossRefGoogle ScholarPubMed
Feldman, R. (2007). Parent–infant synchrony and the construction of shared timing; physiological precursors, developmental outcomes, and risk conditions. Journal of Child Psychology and Psychiatry, 48, 329354. doi:10.1111/j.1469-7610.2006.01701.xCrossRefGoogle ScholarPubMed
Fisher, P. A., & Kim, H. K. (2007). Intervention effects on foster preschoolers’ attachment-related behaviors from a randomized trial. Prevention Science, 8, 161170. doi:10.1007/s11121-007-0066-5CrossRefGoogle ScholarPubMed
Gamwell, K., Nylocks, M., Cross, D., Bradley, B., Norrholm, S. D., & Jovanovic, T. (2015). Fear conditioned responses and PTSD symptoms in children: Sex differences in fear-related symptoms. Developmental Psychobiology, 57, 799808. doi:10.1002/dev.21313CrossRefGoogle ScholarPubMed
Garbarino, J., Guttmann, E., & Seeley, J. W. (1986). The psychologically battered child. San Francisco: Jossey-Bass.Google Scholar
Garrison, E. G. (1987). Psychological maltreatment of children: An emerging focus for inquiry and concern. American Psychologist, 42, 157159. doi:10.1037//0003-066x.42.2.157CrossRefGoogle ScholarPubMed
Gee, D. G., Gabard-Durnam, L. J., Flannery, J., Goff, B., Humphreys, K. L., Telzer, E. H., … Tottenham, N. (2013). Early developmental emergence of human amygdala-prefrontal connectivity after maternal deprivation. Proceedings of the National Academy of Sciences of the United States of America, 110, 1563815643. doi:10.1073/pnas.1307893110CrossRefGoogle ScholarPubMed
Gee, D. G., Gabard-Durnam, L., Telzer, E. H., Humphreys, K. L., Goff, B., Shapiro, M., … Tottenham, N. (2014). Maternal buffering of human amygdala-prefrontal circuitry during childhood but not during adolescence. Psychological Science, 25, 20672078. doi:10.1177/0956797614550878CrossRefGoogle Scholar
Ghosh, V. E., & Gilboa, A. (2014). What is a memory schema? A historical perspective on current neuroscience literature. Neuropsychologia, 53, 104114. doi:10.1016/j.neuropsychologia.2013.11.010CrossRefGoogle ScholarPubMed
Gilbert, P. (2006). Evolution and depression: Issues and implications. Psychological Medicine, 36, 287297. doi:10.1017/S0033291705006112CrossRefGoogle ScholarPubMed
Golm, D., Maughan, B., Barker, E. D., Hill, J., Kennedy, M., Knights, N., … Sonuga-Barke, E. J. S. (in press). Why does early childhood deprivation increase the risk for depression and anxiety in adulthood? A developmental cascade model. Journal of Child Psychology and Psychiatry, doi:10.1111/jcpp.13205Google Scholar
Gorka, A. X., Hanson, J. L., Radtke, S. R., & Hariri, A. R. (2014). Reduced hippocampal and medial prefrontal gray matter mediate the association between reported childhood maltreatment and trait anxiety in adulthood and predict sensitivity to future life stress. Biology of Mood and Anxiety Disorders, 4, 12. doi:10.1186/2045-5380-4-12CrossRefGoogle ScholarPubMed
Graham, A. M., Fisher, P. A., & Pfeifer, J. H. (2013). What sleeping babies hear: A functional MRI study of interparental conflict and infants’ emotion processing. Psychological Science, 24, 782789. doi:10.1177/0956797612458803CrossRefGoogle ScholarPubMed
Greenberg, L. S., & Pascual-Leone, A. (2006). Emotion in psychotherapy: A practice-friendly research review. Journal of Clinical Psychology, 62, 611630. doi:10.1002/jclp.20252CrossRefGoogle ScholarPubMed
Guadagno, A., Kang, M. S., Devenyi, G. A., Mathieu, A. P., Rosa-Neto, P., Chakravarty, M., & Walker, C. D. (2018). Reduced resting-state functional connectivity of the basolateral amygdala to the medial prefrontal cortex in preweaning rats exposed to chronic early-life stress. Brain Structure and Function, 223, 37113729. doi:10.1007/s00429-018-1720-3CrossRefGoogle Scholar
Guassi Moreira, J. F., & Telzer, E. H. (2018). Mother still knows best: Maternal influence uniquely modulates adolescent reward sensitivity during risk taking. Developmental Science, 21. doi:10.1111/desc.12484CrossRefGoogle ScholarPubMed
Guilford, J. P. (1982). Cognitive psychology's ambiguities: Some suggested remedies. Psychological Review, 89, 4859. doi:10.1037/0033-295X.89.1.48CrossRefGoogle Scholar
Gunnar, M. R. (2001). Effects of early deprivation: Findings from orphanage-reared infants and children. In Nelson, C. A., & Luciana, M. (Eds.), Handbook of developmental cognitive neuroscience (Vol. 114). MIT Press; Cambridge, MA.Google Scholar
Gunnar, M. R., Leighton, K., & Peleaux, R. (1984). Effects of temporal predictability on the reactions of 1-year-olds to potentially frightening toys. Developmental Psychology, 20, 449458. doi:10.1037/0012-1649.20.3.449CrossRefGoogle Scholar
Guyer, A. E., Kaufman, J., Hodgdon, H. B., Masten, C. L., Jazbec, S., Pine, D. S., & Ernst, M. (2006). Behavioral alterations in reward system function: The role of childhood maltreatment and psychopathology. Journal of the American Academy of Child and Adolescent Psychiatry, 45, 10591067. doi:10.1097/01.chi.0000227882.50404.11CrossRefGoogle ScholarPubMed
Haith, M. M., Hazan, C., & Goodman, G. S. (1988). Expectation and anticipation of dynamic visual events by 3.5-month-old babies. Child Development, 59, 467479. doi:10.2307/1130325CrossRefGoogle ScholarPubMed
Hanson, J. L., Chung, M. K., Avants, B. B., Shirtcliff, E. A., Gee, J. C., Davidson, R. J., & Pollak, S. D. (2010). Early stress is associated with alterations in the orbitofrontal cortex: A tensor-based morphometry investigation of brain structure and behavioral risk. Journal of Neuroscience, 30, 74667472. doi:10.1523/JNEUROSCI.0859-10.2010CrossRefGoogle ScholarPubMed
Hanson, J. L., Hariri, A. R., & Williamson, D. E. (2015a). Blunted ventral striatum development in adolescence reflects emotional neglect and predicts depressive symptoms. Biological Psychiatry, 78, 598605. doi:10.1016/j.biopsych.2015.05.010CrossRefGoogle ScholarPubMed
Hanson, J. L., Knodt, A. R., Brigidi, B. D., & Hariri, A. R. (2015b). Lower structural integrity of the uncinate fasciculus is associated with a history of child maltreatment and future psychological vulnerability to stress. Development and Psychopathology, 27, 16111619. doi:10.1017/S0954579415000978CrossRefGoogle Scholar
Hanson, J. L., Nacewicz, B. M., Sutterer, M. J., Cayo, A. A., Schaefer, S. M., Rudolph, K. D., … Davidson, R. J. (2015c). Behavioral problems after early life stress: Contributions of the hippocampus and amygdala. Biological Psychiatry, 77, 314323. doi:10.1016/j.biopsych.2014.04.020CrossRefGoogle ScholarPubMed
Hanson, J. L., van den Bos, W., Roeber, B. J., Rudolph, K. D., Davidson, R. J., & Pollak, S. D. (2017). Early adversity and learning: Implications for typical and atypical behavioral development. Journal of Child Psychology and Psychiatry, 58, 770778. doi:10.1111/jcpp.12694CrossRefGoogle ScholarPubMed
Hart, S. N., & Brassard, M. R. (1987). A major threat to children's mental health: Psychological maltreatment. American Psychologist, 42, 160165. doi:10.1037//0003-066x.42.2.160CrossRefGoogle Scholar
Hart, H., & Rubia, K. (2012). Neuroimaging of child abuse: A critical review. Frontiers in Human Neuroscience, 6, 52. doi:10.3389/fnhum.2012.00052CrossRefGoogle ScholarPubMed
Heany, S. J., Groenewold, N. A., Uhlmann, A., Dalvie, S., Stein, D. J., & Brooks, S. J. (2018). The neural correlates of Childhood Trauma Questionnaire scores in adults: A meta-analysis and review of functional magnetic resonance imaging studies. Development and Psychopathology, 30, 14751485. doi:10.1017/S0954579417001717CrossRefGoogle ScholarPubMed
Herzberg, M. P., Hodel, A. S., Cowell, R. A., Hunt, R. H., Gunnar, M. R., & Thomas, K. M. (2018). Risk taking, decision-making, and brain volume in youth adopted internationally from institutional care. Neuropsychologia, 119, 262270. doi:10.1016/j.neuropsychologia.2018.08.022CrossRefGoogle ScholarPubMed
Holmes, B. M., & Lyons-Ruth, K. (2006). The Relationship Questionnaire-Clinical Version (Rq-Cv): Introducing a Profoundly-Distrustful Attachment Style. Infant Mental Health Journal, 27, 310325. doi:10.1002/imhj.20094CrossRefGoogle ScholarPubMed
Honeycutt, J. A., Demaestri, C., Peterzell, S., Silveri, M. M., Cai, X., Kulkarni, P., … Brenhouse, H. C. (2020). Altered corticolimbic connectivity reveals sex-specific adolescent outcomes in a rat model of early life adversity. Elife, 9. doi:10.7554/eLife.52651CrossRefGoogle Scholar
Hostinar, C. E., & Gunnar, M. R. (2015). Social support can buffer against stress and shape brain activity. American Journal of Bioethics Neuroscience, 6, 3442. doi:10.1080/21507740.2015.1047054Google ScholarPubMed
Hostinar, C. E., Stellern, S. A., Schaefer, C., Carlson, S. M., & Gunnar, M. R. (2012). Associations between early life adversity and executive function in children adopted internationally from orphanages. Proceedings of the National Academy of Sciences U S A, 109, 1720817212. doi:10.1073/pnas.1121246109CrossRefGoogle ScholarPubMed
Howell, B. R., Grand, A. P., McCormack, K. M., Shi, Y., LaPrarie, J. L., Maestripieri, D., … Sanchez, M. M. (2014). Early adverse experience increases emotional reactivity in juvenile rhesus macaques: Relation to amygdala volume. Developmental Psychobiology, 56, 17351746. doi:10.1002/dev.21237CrossRefGoogle ScholarPubMed
Howell, B. R., McCormack, K. M., Grand, A. P., Sawyer, N. T., Zhang, X., Maestripieri, D., … Sanchez, M. M. (2013). Brain white matter microstructure alterations in adolescent rhesus monkeys exposed to early life stress: Associations with high cortisol during infancy. Biology of Mood and Anxiety Disorders, 3, 21. doi:10.1186/2045-5380-3-21CrossRefGoogle ScholarPubMed
Humphreys, K. L., Gabard-Durnam, L., Goff, B., Telzer, E. H., Flannery, J., Gee, D. G., … Tottenham, N. (2019). Friendship and social functioning following early institutional rearing: The role of ADHD symptoms. Development and Psychopathology, 31, 14771487. doi:10.1017/S0954579418001050CrossRefGoogle ScholarPubMed
Humphreys, K. L., Lee, S. S., Telzer, E. H., Gabard-Durnam, L. J., Goff, B., Flannery, J., & Tottenham, N. (2015). Exploration-exploitation strategy is dependent on early experience. Developmental Psychobiology, 57, 313321. doi:10.1002/dev.21293CrossRefGoogle ScholarPubMed
Isabella, R. A., & Belsky, J. (1991). Interactional synchrony and the origins of infant-mother attachment: A replication study. Child Development, 62, 373384. doi:10.2307/1131010CrossRefGoogle ScholarPubMed
Itoga, C. A., Chen, Y., Fateri, C., Echeverry, P. A., Lai, J. M., Delgado, J., … Xu, X. (2019). New viral-genetic mapping uncovers an enrichment of corticotropin-releasing hormone-expressing neuronal inputs to the nucleus accumbens from stress-related brain regions. Journal of Comparative Neurology, 527, 24742487. doi:10.1002/cne.24676CrossRefGoogle Scholar
Izard, C. E., Woodburn, E. M., Finlon, K. J., Krauthamer-Ewing, E. S., Grossman, S. R., & Seidenfeld, A. (2011). Emotion Knowledge, Emotion Utilization, and Emotion Regulation. Emotion Review, 3, 4452. doi:10.1177/1754073910380972CrossRefGoogle Scholar
Jaffe, J., Beebe, B., Feldstein, S., Crown, C. L., & Jasnow, M. D. (2001). Rhythms of dialogue in infancy: Coordinated timing in development. Monographs of the Society for Research in Child Development, 66, iviii, 1-132. https://www.jstor.org/stable/3181589Google ScholarPubMed
Johnson, S. C., Dweck, C. S., & Chen, F. S. (2007). Evidence for infants’ internal working models of attachment. Psychological Science, 18, 501502. doi:10.1111/j.1467-9280.2007.01929.xCrossRefGoogle ScholarPubMed
Johnson, S. C., Dweck, C. S., Chen, F. S., Stern, H. L., Ok, S. J., & Barth, M. (2010). At the intersection of social and cognitive development: Internal working models of attachment in infancy. Cognitive Science, 34, 807825. doi:10.1111/j.1551-6709.2010.01112.xCrossRefGoogle ScholarPubMed
Jovanovic, T., Nylocks, K. M., Gamwell, K. L., Smith, A., Davis, T. A., Norrholm, S. D., & Bradley, B. (2014). Development of fear acquisition and extinction in children: Effects of age and anxiety. Neurobiology of Learning and Memory, 113, 135142. doi:10.1016/j.nlm.2013.10.016CrossRefGoogle ScholarPubMed
Kaiser, R. H., Clegg, R., Goer, F., Pechtel, P., Beltzer, M., Vitaliano, G., … Pizzagalli, D. A. (2018). Childhood stress, grown-up brain networks: Corticolimbic correlates of threat-related early life stress and adult stress response. Psychological Medicine, 48, 11571166. doi:10.1017/S0033291717002628CrossRefGoogle ScholarPubMed
Kaufman, J., & Cicchetti, D. (1989). Effects of maltreatment on school-age children's socioemotional development: Assessments in a day-camp setting. Developmental Psychology, 25, 516524. doi:10.1037/0012-1649.25.4.516CrossRefGoogle Scholar
Kendler, K. S., Hettema, J. M., Butera, F., Gardner, C. O., & Prescott, C. A. (2003). Life event dimensions of loss, humiliation, entrapment, and danger in the prediction of onsets of major depression and generalized anxiety. Archives of General Psychiatry, 60, 789796. doi:10.1001/archpsyc.60.8.789CrossRefGoogle ScholarPubMed
Kessler, R. C., McLaughlin, K. A., Green, J. G., Gruber, M. J., Sampson, N. A., Zaslavsky, A. M., … Williams, D. R. (2010). Childhood adversities and adult psychopathology in the WHO World Mental Health Surveys. British Journal of Psychiatry, 197, 378385. doi:10.1192/bjp.bp.110.080499CrossRefGoogle ScholarPubMed
Kidd, C., Palmeri, H., & Aslin, R. N. (2013). Rational snacking: Young children's decision-making on the marshmallow task is moderated by beliefs about environmental reliability. Cognition, 126, 109114. doi:10.1016/j.cognition.2012.08.004CrossRefGoogle ScholarPubMed
Kirsh, S. J., & Cassidy, J. (1997). Preschoolers’ attention to and memory for attachment-relevant information. Child Development, 68, 11431153. doi:10.2307/1132297CrossRefGoogle ScholarPubMed
Kitayama, N., Quinn, S., & Bremner, J. D. (2006). Smaller volume of anterior cingulate cortex in abuse-related posttraumatic stress disorder. Journal of Affective Disorders, 90, 171174. doi:10.1016/j.jad.2005.11.006CrossRefGoogle ScholarPubMed
Kopala-Sibley, D. C., Cyr, M., Finsaas, M. C., Orawe, J., Huang, A., Tottenham, N., & Klein, D. N. (2018). Early childhood parenting predicts late childhood brain functional connectivity during emotion perception and reward processing. Child Development, 91(1), 110–128, doi:10.1111/cdev.13126Google ScholarPubMed
Kopetz, C., Woerner, J. I., MacPherson, L., Lejuez, C. W., Nelson, C. A., Zeanah, C. H., & Fox, N. A. (2019). Early psychosocial deprivation and adolescent risk-taking: The role of motivation and executive control. Journal of Experimental Psychology: General, 148, 388399. doi:10.1037/xge0000486CrossRefGoogle ScholarPubMed
Koss, K. J., Lawler, J. M., & Gunnar, M. R. (2020). Early adversity and children's regulatory deficits: Does postadoption parenting facilitate recovery in postinstitutionalized children? Development and Psychopathology. doi:10.1017/S0954579419001226.CrossRefGoogle ScholarPubMed
Kumaran, D., Summerfield, J. J., Hassabis, D., & Maguire, E. A. (2009). Tracking the emergence of conceptual knowledge during human decision making. Neuron, 63, 889901. doi:10.1016/j.neuron.2009.07.030CrossRefGoogle ScholarPubMed
LaBar, K. S. (2003). Emotional memory functions of the human amygdala. Current Neurology and Neuroscience Reports, 3, 363364. doi:10.1007/s11910-003-0015-zCrossRefGoogle ScholarPubMed
Lejuez, C., Read, J., Kahler, C., Richards, J., Ramsey, S., Stuart, G., … Brown, R. (2002). Evaluation of a behavioral measure of risk taking: The Balloon Analogue Risk Task (BART). Journal of Experimental Psychology: Applied, 8, 7584. doi:10.1037/1076-898X.8.2.75Google Scholar
Likhtik, E., & Paz, R. (2015). Amygdala-prefrontal interactions in (mal)adaptive learning. Trends in Neuroscience, 38, 158166. doi:10.1016/j.tins.2014.12.007CrossRefGoogle ScholarPubMed
Lim, L., Radua, J., & Rubia, K. (2014). Gray matter abnormalities in childhood maltreatment: A voxel-wise meta-analysis. American Journal of Psychiatry, 171, 854863. doi:10.1176/appi.ajp.2014.13101427CrossRefGoogle ScholarPubMed
Lind, T., Lee Raby, K., Caron, E. B., Roben, C. K., & Dozier, M. (2017). Enhancing executive functioning among toddlers in foster care with an attachment-based intervention. Development and Psychopathology, 29, 575586. doi:10.1017/S0954579417000190CrossRefGoogle ScholarPubMed
Loman, M. M., Johnson, A. E., Quevedo, K., Lafavor, T. L., & Gunnar, M. R. (2014). Risk-taking and sensation-seeking propensity in postinstitutionalized early adolescents. Journal of Child Psychology and Psychiatry, 55, 11451152. doi:10.1111/jcpp.12208CrossRefGoogle ScholarPubMed
Lougheed, J. P., Koval, P., & Hollenstein, T. (2016). Sharing the burden: The interpersonal regulation of emotional arousal in mother-daughter dyads. Emotion, 16, 8393. doi:10.1037/emo0000105CrossRefGoogle ScholarPubMed
Lupien, S. J., Parent, S., Evans, A. C., Tremblay, R. E., Zelazo, P. D., Corbo, V., … Seguin, J. R. (2011). Larger amygdala but no change in hippocampal volume in 10-year-old children exposed to maternal depressive symptomatology since birth. Proceedings of the National Academy of Sciences USA, 108, 1432414329. doi:10.1073/pnas.1105371108CrossRefGoogle ScholarPubMed
Lyons-Ruth, K., Pechtel, P., Yoon, S. A., Anderson, C. M., & Teicher, M. H. (2016). Disorganized attachment in infancy predicts greater amygdala volume in adulthood. Behavioural Brain Research, 308, 8393. doi:10.1016/j.bbr.2016.03.050CrossRefGoogle ScholarPubMed
Ma, F., Chen, B., Xu, F., Lee, K., & Heyman, G. D. (2018). Generalized trust predicts young children's willingness to delay gratification. Journal of Experimental Child Psychology, 169, 118125. doi:10.1016/j.jecp.2017.12.015CrossRefGoogle ScholarPubMed
Machlin, L., Miller, A. B., Snyder, J., McLaughlin, K. A., & Sheridan, M. A. (2019). Differential associations of deprivation and threat with cognitive control and fear conditioning in early childhood. Frontiers in Behavioral Neuroscience, 13, 80. doi:10.3389/fnbeh.2019.00080CrossRefGoogle ScholarPubMed
Maheu, F. S., Dozier, M., Guyer, A. E., Mandell, D., Peloso, E., Poeth, K., … Ernst, M. (2010). A preliminary study of medial temporal lobe function in youths with a history of caregiver deprivation and emotional neglect. Cognitive, Affective, and Behavioral Neuroscience, 10, 3449. doi:10.3758/CABN.10.1.34CrossRefGoogle ScholarPubMed
Malatesta, C. Z., Culver, C., Tesman, J. R., & Shepard, B. (1989). The development of emotion expression during the first two years of life. Monographs of the Society for Research in Child Development, 54, 1104. ;discussion 105-136.CrossRefGoogle ScholarPubMed
Manly, J. T., Kim, J. E., Rogosch, F. A., & Cicchetti, D. (2001). Dimensions of child maltreatment and children's adjustment: Contributions of developmental timing and subtype. Development and Psychopathology, 13, 759782.CrossRefGoogle ScholarPubMed
Markowitsch, H. J., & Staniloiu, A. (2011). Amygdala in action: Relaying biological and social significance to autobiographical memory. Neuropsychologia, 49, 718733. doi:10.1016/j.neuropsychologia.2010.10.007CrossRefGoogle ScholarPubMed
Markus, H., & Zajonc, R. B. (1985). The Cognitive perspective in social psychology. Handbook of Social Psychology, 1, 137230.Google Scholar
Martin, A., Razza, R., & Brooks-Gunn, J. (2012). Specifying the links between household chaos and preschool children's development. Early Child Development and Care, 182, 12471263. doi:10.1080/03004430.2011.605522CrossRefGoogle ScholarPubMed
Marusak, H. A., Thomason, M. E., Peters, C., Zundel, C., Elrahal, F., & Rabinak, C. A. (2016). You say ‘prefrontal cortex’ and I say ‘anterior cingulate': Meta-analysis of spatial overlap in amygdala-to-prefrontal connectivity and internalizing symptomology. Translational Psychiatry, 6, e944. doi:10.1038/tp.2016.218CrossRefGoogle ScholarPubMed
Mathew, S. J., Shungu, D. C., Mao, X., Smith, E. L., Perera, G. M., Kegeles, L. S., … Coplan, J. D. (2003). A magnetic resonance spectroscopic imaging study of adult nonhuman primates exposed to early-life stressors. Biological Psychiatry, 54, 727735. doi:10.1016/s0006-3223(03)00004-0CrossRefGoogle ScholarPubMed
Mattavelli, G., Cattaneo, Z., & Papagno, C. (2011). Transcranial magnetic stimulation of medial prefrontal cortex modulates face expressions processing in a priming task. Neuropsychologia, 49, 992998. doi:10.1016/j.neuropsychologia.2011.01.038CrossRefGoogle Scholar
McClelland, J. L., McNaughton, B. L., & O'Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102, 419457. doi:10.1037/0033-295X.102.3.419CrossRefGoogle ScholarPubMed
McCrory, E. J., De Brito, S. A., Kelly, P. A., Bird, G., Sebastian, C. L., Mechelli, A., … Viding, E. (2013). Amygdala activation in maltreated children during pre-attentive emotional processing. British Journal of Psychiatry, 202, 269276. doi:10.1192/bjp.bp.112.116624CrossRefGoogle ScholarPubMed
McGee, R. A., Wolfe, D. A., & Wilson, S. K. (1997). Multiple maltreatment experiences and adolescent behavior problems: Adolescents’ perspectives. Development and Psychopathology, 9, 131149. doi:10.1017/s0954579497001107CrossRefGoogle ScholarPubMed
McLaughlin, K. A., Sheridan, M. A., Gold, A. L., Duys, A., Lambert, H. K., Peverill, M., … Pine, D. S. (2016). Maltreatment exposure, brain structure, and fear conditioning in children and adolescents. Neuropsychopharmacology, 41, 19561964. doi:10.1038/npp.2015.365CrossRefGoogle ScholarPubMed
McLaughlin, K. A., Sheridan, M. A., & Lambert, H. K. (2014). Childhood adversity and neural development: Deprivation and threat as distinct dimensions of early experience. Neuroscience and Biobehavioral Reviews, 47, 578591. doi:10.1016/j.neubiorev.2014.10.012CrossRefGoogle ScholarPubMed
McLaughlin, K. A., Zeanah, C. H., Fox, N. A., & Nelson, C. A. (2012). Attachment security as a mechanism linking foster care placement to improved mental health outcomes in previously institutionalized children. Journal of Child Psychology and Psychiatry, 53, 4655. doi:10.1111/j.1469-7610.2011.02437.xCrossRefGoogle ScholarPubMed
Meeter, M., & Murre, J. M. (2004). Consolidation of long-term memory: Evidence and alternatives. Psychological Bulletin, 130, 843857. doi:10.1037/0033-2909.130.6.843CrossRefGoogle ScholarPubMed
Mehta, M. A., Golembo, N. I., Nosarti, C., Colvert, E., Mota, A., Williams, S. C., … Sonuga-Barke, E. J. (2009). Amygdala, hippocampal and corpus callosum size following severe early institutional deprivation: The English and Romanian Adoptees study pilot. Journal of Child Psychology & Psychiatry, 50, 943951. doi:10.1111/j.1469-7610.2009.02084.xCrossRefGoogle ScholarPubMed
Mehta, M. A., Gore-Langton, E., Golembo, N., Colvert, E., Williams, S. C., & Sonuga-Barke, E. (2010). Hyporesponsive reward anticipation in the basal ganglia following severe institutional deprivation early in life. Journal of Cognitive Neuroscience, 22, 23162325. doi:10.1162/jocn.2009.21394CrossRefGoogle ScholarPubMed
Messina, I., Sambin, M., Beschoner, P., & Viviani, R. (2016). Changing views of emotion regulation and neurobiological models of the mechanism of action of psychotherapy. Cognitive, Affective, and Behavioral Neuroscience, 16, 571587. doi:10.3758/s13415-016-0440-5CrossRefGoogle ScholarPubMed
Miller, J. G., Ho, T. C., Humphreys, K. L., King, L. S., Foland-Ross, L. C., Colich, N. L., … Gotlib, I. H. (2020). Early life stress, frontoamygdala connectivity, and biological aging in adolescence: A longitudinal investigation. Cerebral Cortex, 30(7), 4269–4280. doi:10.1093/cercor/bhaa057CrossRefGoogle ScholarPubMed
Mineka, S., Gunnar, M., & Champoux, M. (1986). Control and early socioemotional development: Infant rhesus monkeys reared in controllable versus uncontrollable environments. Child Development, 57, 12411256. doi:10.2307/1130447CrossRefGoogle Scholar
Mineka, S., & Hendersen, R. W. (1985). Controllability and predictability in acquired motivation. Annual Review of Psychology, 36, 495529. doi:10.1146/annurev.ps.36.020185.002431CrossRefGoogle ScholarPubMed
Moffett, L., Flannagan, C., & Shah, P. (2020). The influence of environmental reliability in the marshmallow task: An extension study. Journal of Experimental Child Psychology, 194, 104821. doi:10.1016/j.jecp.2020.104821CrossRefGoogle Scholar
Moosavian, E., & Nejati, S. F. (2018). Association between facial affect recognition and maladaptive schema in people with depressive symptoms. Practice in Clinical Psychology, 6, 8392. doi:10.29252/nirp.jpcp.6.2.83Google Scholar
Moreno-Lopez, L., Ioannidis, K., Askelund, A. D., Smith, A. J., Schueler, K., & van Harmelen, A. L. (2020). The resilient emotional brain: A scoping review of the medial prefrontal cortex and limbic structure and function in resilient adults with a history of childhood maltreatment. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 5(4), 392–402. doi:10.1016/j.bpsc.2019.12.008Google ScholarPubMed
Morey, R. A., Haswell, C. C., Hooper, S. R., & De Bellis, M. D. (2016). Amygdala, hippocampus, and ventral medial prefrontal cortex volumes differ in maltreated youth with and without chronic posttraumatic stress disorder. Neuropsychopharmacology, 41, 791801. doi:10.1038/npp.2015.205CrossRefGoogle ScholarPubMed
Moriceau, S., Shionoya, K., Jakubs, K., & Sullivan, R. M. (2009). Early-life stress disrupts attachment learning: The role of amygdala corticosterone, locus ceruleus corticotropin releasing hormone, and olfactory bulb norepinephrine. Journal of Neuroscience, 29, 1574515755. doi:10.1523/JNEUROSCI.4106-09.2009CrossRefGoogle ScholarPubMed
Moriceau, S., & Sullivan, R. M. (2005). Neurobiology of infant attachment. Developmental Psychobiology, 47, 230242. doi:10.1002/dev.20093CrossRefGoogle ScholarPubMed
Moriceau, S., & Sullivan, R. M. (2006). Maternal presence serves as a switch between learning fear and attraction in infancy. Nature Neuroscience, 9, 10041006. doi:10.1038/nn1733CrossRefGoogle ScholarPubMed
Mothersill, O., & Donohoe, G. (2016). Neural effects of social environmental stress - an activation likelihood estimation meta-analysis. Psychological Medicine, 46, 20152023. doi:10.1017/S0033291716000477CrossRefGoogle ScholarPubMed
Mueller, S. C., Maheu, F. S., Dozier, M., Peloso, E., Mandell, D., Leibenluft, E., … Ernst, M. (2010). Early-life stress is associated with impairment in cognitive control in adolescence: An fMRI study. Neuropsychologia, 48, 30373044. doi:S0028-3932(10)00242-3 [pii] 10.1016/j.neuropsychologia.2010.06.013CrossRefGoogle ScholarPubMed
Neisser. (1967). Cogntive Psychology. New York: Appleton-Century-Crofts.Google Scholar
Newberger, C. M. (1991). Child maltreatment: Problems and promise for the 1990s. Reauthorization of the Child Abuse Prevention and Treatment Act (CAPTA). In Hearing before the Subcommittee on Children, Family, Drugs and Alcoholism of the Committee on Labor and Human Resources, United States Senate, 102nd Congress (Senate Hearing 102-691). Washington, DC: U.S. Government Printing Office.Google Scholar
Nieuwenhuis, I. L., & Takashima, A. (2011). The role of the ventromedial prefrontal cortex in memory consolidation. Behavioural Brain Research, 218, 325334. doi:10.1016/j.bbr.2010.12.009CrossRefGoogle ScholarPubMed
Norman, R. E., Byambaa, M., De, R., Butchart, A., Scott, J., & Vos, T. (2012). The long-term health consequences of child physical abuse, emotional abuse, and neglect: A systematic review and meta-analysis. PLoS Medicine, 9, e1001349. doi:10.1371/journal.pmed.1001349CrossRefGoogle ScholarPubMed
Norrholm, S. D., Jovanovic, T., Olin, I. W., Sands, L. A., Karapanou, I., Bradley, B., & Ressler, K. J. (2011). Fear extinction in traumatized civilians with posttraumatic stress disorder: Relation to symptom severity. Biological Psychiatry, 69, 556563. doi:10.1016/j.biopsych.2010.09.013CrossRefGoogle ScholarPubMed
Olsavsky, A. K., Telzer, E. H., Shapiro, M., Humphreys, K. L., Flannery, J., Goff, B., & Tottenham, N. (2013). Indiscriminate amygdala response to mothers and strangers after early maternal deprivation. Biological Psychiatry, 74, 853860. doi:10.1016/j.biopsych.2013.05.025CrossRefGoogle ScholarPubMed
Ono, M., Kikusui, T., Sasaki, N., Ichikawa, M., Mori, Y., & Murakami-Murofushi, K. (2008). Early weaning induces anxiety and precocious myelination in the anterior part of the basolateral amygdala of male Balb/c mice. Neuroscience, 156, 11031110. doi:S0306-4522(08)01124-X [pii] 10.1016/j.neuroscience.2008.07.078CrossRefGoogle ScholarPubMed
Opendak, M., Theisen, E., Blomkvist, A., Hollis, K., Lind, T., Sarro, E., … Sullivan, R. M. (2020). Adverse caregiving in infancy blunts neural processing of the mother. Nature Communications, 11, 1119. doi:10.1038/s41467-020-14801-3CrossRefGoogle ScholarPubMed
O'Reilly, R. C., Bhattacharyya, R., Howard, M. D., & Ketz, N. (2014). Complementary learning systems. Cognitive Science, 38, 12291248. doi:10.1111/j.1551-6709.2011.01214.xCrossRefGoogle ScholarPubMed
Pechtel, P., Lyons-Ruth, K., Anderson, C. M., & Teicher, M. H. (2014). Sensitive periods of amygdala development: The role of maltreatment in preadolescence. Neuroimage, 97, 236244. doi:10.1016/j.neuroimage.2014.04.025CrossRefGoogle ScholarPubMed
Pechtel, P., & Pizzagalli, D. A. (2011). Effects of early life stress on cognitive and affective function: An integrated review of human literature. Psychopharmacology (Berl), 214, 5570. doi:10.1007/s00213-010-2009-2CrossRefGoogle ScholarPubMed
Philip, N. S., Sweet, L. H., Tyrka, A. R., Price, L. H., Bloom, R. F., & Carpenter, L. L. (2013). Decreased default network connectivity is associated with early life stress in medication-free healthy adults. European Neuropsychopharmacology, 23, 2432. doi:10.1016/j.euroneuro.2012.10.008CrossRefGoogle ScholarPubMed
Piaget, J. (1955). The child's construction of reality. London: Routledge & Kegan Paul.Google Scholar
Pitula, C. E., Wenner, J. A., Gunnar, M. R., & Thomas, K. M. (2017). To trust or not to trust: Social decision-making in post-institutionalized, internationally adopted youth. Developmental Science, 20, e12375. doi:10.1111/desc.12375CrossRefGoogle ScholarPubMed
Pollak, S. D., Cicchetti, D., Hornung, K., & Reed, A. (2000). Recognizing emotion in faces: Developmental effects of child abuse and neglect. Developmental Psychology, 36, 679688. doi:10.1037/0012-1649.36.5.679CrossRefGoogle ScholarPubMed
Pollak, S. D., & Sinha, P. (2002). Effects of early experience on children's recognition of facial displays of emotion. Developmental Psychology, 38, 784791. doi:10.1037/0012-1649.38.5.784CrossRefGoogle ScholarPubMed
Pollak, S. D., & Tolley-Schell, S. A. (2003). Selective attention to facial emotion in physically abused children. Journal of Abnormal Psychology, 112, 323338. doi:10.1037/0021-843x.112.3.323CrossRefGoogle ScholarPubMed
Preston, A. R., & Eichenbaum, H. (2013). Interplay of hippocampus and prefrontal cortex in memory. Current Biology, 23, R764773. doi:10.1016/j.cub.2013.05.041CrossRefGoogle ScholarPubMed
Raineki, C., Cortés, M. R., Belnoue, L., & Sullivan, R. M. (2012). Effects of early-life abuse differ across development: Infant social behavior deficits are followed by adolescent depressive-like behaviors mediated by the amygdala. Journal of Neuroscience, 32, 77587765. doi:10.1523/JNEUROSCI.5843-11.2012CrossRefGoogle ScholarPubMed
Raineki, C., Moriceau, S., & Sullivan, R. M. (2010). Developing a neurobehavioral animal model of infant attachment to an abusive caregiver. Biological Psychiatry, 67, 11371145. doi:10.1016/j.biopsych.2009.12.019CrossRefGoogle Scholar
Raineki, C., Opendak, M., Sarro, E., Showler, A., Bui, K., McEwen, B. S., … Sullivan, R. M. (2019). During infant maltreatment, stress targets hippocampus, but stress with mother present targets amygdala and social behavior. Proceedings of the National Academy of Sciences U S A, 116, 2282122832. doi:10.1073/pnas.1907170116CrossRefGoogle ScholarPubMed
Raio, C. M., Carmel, D., Carrasco, M., & Phelps, E. A. (2012). Nonconscious fear is quickly acquired but swiftly forgotten. Current Biology, 22, R477479. doi:10.1016/j.cub.2012.04.023CrossRefGoogle ScholarPubMed
Rincon-Cortes, M., & Sullivan, R. M. (2016). Emergence of social behavior deficit, blunted corticolimbic activity and adult depression-like behavior in a rodent model of maternal maltreatment. Translational Psychiatry, 6, e930. doi:10.1038/tp.2016.205CrossRefGoogle Scholar
Robinson-Drummer, P. A., Opendak, M., Blomkvist, A., Chan, S., Tan, S., Delmer, C., … Sullivan, R. M. (2019). Infant trauma alters social buffering of threat learning: Emerging role of prefrontal cortex in preadolescence. Frontiers in Behavioral Neuroscience, 13, 132. doi:10.3389/fnbeh.2019.00132CrossRefGoogle ScholarPubMed
Ross, L. T., & Hill, E. M. (2002). Childhood unpredictability, schemas for unpredictability, and risk taking. Social Behavior and Personality: an International Journal, 30, 453473. doi:10.2224/sbp.2002.30.5.453CrossRefGoogle Scholar
Roth, T. L., Raineki, C., Salstein, L., Perry, R., Sullivan-Wilson, T. A., Sloan, A., … Sullivan, R. M. (2013). Neurobiology of secure infant attachment and attachment despite adversity: A mouse model. Genes, Brain and Behavior, 12, 673680. doi:10.1111/gbb.12067Google ScholarPubMed
Roy, M., Shohamy, D., & Wager, T. D. (2012). Ventromedial prefrontal-subcortical systems and the generation of affective meaning. Trends in Cognitive Science, 16, 147156. doi:10.1016/j.tics.2012.01.005CrossRefGoogle ScholarPubMed
Saffran, J. R., & Kirkham, N. Z. (2018). Infant statistical learning. Annual Review of Psychology, 69, 181203. doi:10.1146/annurev-psych-122216-011805CrossRefGoogle ScholarPubMed
Sanders, B., & Becker-Lausen, E. (1995). The measurement of psychological maltreatment: Early data on the child abuse and trauma scale. Child Abuse and Neglect, 19, 315323. doi:10.1016/S0145-2134(94)00131-6CrossRefGoogle ScholarPubMed
Sarabdjitsingh, R. A., Loi, M., Joels, M., Dijkhuizen, R. M., & van der Toorn, A. (2017). Early life stress-induced alterations in rat brain structures measured with high resolution MRI. PLoS One, 12, e0185061. doi:10.1371/journal.pone.0185061CrossRefGoogle ScholarPubMed
Sattler, K. M. P., & Font, S. A. (2018). Resilience in young children involved with child protective services. Child Abuse and Neglect, 75, 104114. doi:10.1016/j.chiabu.2017.05.004CrossRefGoogle ScholarPubMed
Seidel, K., Poeggel, G., Holetschka, R., Helmeke, C., & Braun, K. (2011). Paternal deprivation affects the development of corticotrophin-releasing factor-expressing neurones in prefrontal cortex, amygdala and hippocampus of the biparental Octodon degus. Journal of Neuroendocrinology, 23, 11661176. doi:10.1111/j.1365-2826.2011.02208.xCrossRefGoogle ScholarPubMed
Seltzer, L. J., Ziegler, T. E., & Pollak, S. D. (2010). Social vocalizations can release oxytocin in humans. Proceedings of the Royal Society B: Biological Sciences, 277, 26612666. doi:10.1098/rspb.2010.0567CrossRefGoogle ScholarPubMed
Shackman, J. E., Shackman, A. J., & Pollak, S. D. (2007). Physical abuse amplifies attention to threat and increases anxiety in children. Emotion, 7, 838852. doi:10.1037/1528-3542.7.4.838CrossRefGoogle ScholarPubMed
Sheridan, M. A., McLaughlin, K. A., Winter, W., Fox, N., Zeanah, C., & Nelson, C. A. (2018). Early deprivation disruption of associative learning is a developmental pathway to depression and social problems. Nature Communications, 9, 2216. doi:10.1038/s41467-018-04381-8CrossRefGoogle ScholarPubMed
Silvers, J. A., Lumian, D. S., Gabard-Durnam, L., Gee, D. G., Goff, B., Fareri, D. S., … Tottenham, N. (2016). Previous institutionalization is followed by broader amygdala-hippocampal-pfc network connectivity during aversive learning in human development. Journal of Neuroscience, 36, 64206430. doi:10.1523/JNEUROSCI.0038-16.2016CrossRefGoogle ScholarPubMed
Sommer, T. (2017). The emergence of knowledge and how it supports the memory for novel related information. Cerebral Cortex, 27, 19061921. doi:10.1093/cercor/bhw031Google ScholarPubMed
Spinazzola, J., Hodgdon, H., Liang, L. J., Ford, J. D., Layne, C. M., Pynoos, R., … Kisiel, C. (2014). Unseen wounds: The contribution of psychological maltreatment to child and adolescent mental health and risk outcomes. Psychological Trauma: Theory, Research, Practice, and Policy, 6, S18S28. doi:10.1037/a0037766CrossRefGoogle Scholar
Spinelli, S., Chefer, S., Suomi, S. J., Higley, J. D., Barr, C. S., & Stein, E. (2009). Early-life stress induces long-term morphologic changes in primate brain. Archives of General Psychiatry, 66, 658665. doi:10.1001/archgenpsychiatry.2009.52CrossRefGoogle ScholarPubMed
Squire, L. R., Genzel, L., Wixted, J. T., & Morris, R. G. (2015). Memory consolidation. Cold Spring Harbor Perspectives in Biology, 7, a021766. doi:10.1101/cshperspect.a021766CrossRefGoogle ScholarPubMed
Sweegers, C. C., Takashima, A., Fernandez, G., & Talamini, L. M. (2014). Neural mechanisms supporting the extraction of general knowledge across episodic memories. Neuroimage, 87, 138146. doi:10.1016/j.neuroimage.2013.10.063CrossRefGoogle ScholarPubMed
Taylor, S. E., Lehman, B. J., Kiefe, C. I., & Seeman, T. E. (2006). Relationship of early life stress and psychological functioning to adult C-reactive protein in the coronary artery risk development in young adults study. Biological Psychiatry, 60, 819824. doi:10.1016/j.biopsych.2006.03.016CrossRefGoogle ScholarPubMed
Teicher, M. H., Samson, J. A., Anderson, C. M., & Ohashi, K. (2016). The effects of childhood maltreatment on brain structure, function and connectivity. Nature Reviews Neuroscience, 17, 652666. doi:10.1038/nrn.2016.111CrossRefGoogle ScholarPubMed
Teissier, A., Le Magueresse, C., Olusakin, J., Andrade da Costa, B. L. S., De Stasi, A. M., Bacci, A., … Gaspar, P. (2020). Early-life stress impairs postnatal oligodendrogenesis and adult emotional behaviour through activity-dependent mechanisms. Molecular Psychiatry, 25, 1159–1174. doi:10.1038/s41380-019-0493-2CrossRefGoogle ScholarPubMed
Telzer, E. H., Ichien, N. T., & Qu, Y. (2015). Mothers know best: Redirecting adolescent reward sensitivity toward safe behavior during risk taking. Social, Cognitive, and Affective Neuroscience, 10, 13831391. doi:10.1093/scan/nsv026CrossRefGoogle ScholarPubMed
Thijssen, S., Muetzel, R. L., Bakermans-Kranenburg, M. J., Jaddoe, V. W., Tiemeier, H., Verhulst, F. C., … Van Ijzendoorn, M. H. (2017). Insensitive parenting may accelerate the development of the amygdala-medial prefrontal cortex circuit. Development and Psychopathology, 29, 505518. doi:10.1017/S0954579417000141CrossRefGoogle ScholarPubMed
Thimm, J. C. (2010). Personality and early maladaptive schemas: A five-factor model perspective. Journal of Behavior Therapy and Experimental Psychiatry, 41, 373380. doi:10.1016/j.jbtep.2010.03.009CrossRefGoogle ScholarPubMed
Thomason, M. E., & Marusak, H. A. (2017). Toward understanding the impact of trauma on the early developing human brain. Neuroscience, 342, 5567. doi:10.1016/j.neuroscience.2016.02.022CrossRefGoogle ScholarPubMed
Tompary, A., & Davachi, L. (2017). Consolidation promotes the emergence of representational overlap in the hippocampus and medial prefrontal cortex. Neuron, 96, 228241 e225. doi:10.1016/j.neuron.2017.09.005CrossRefGoogle ScholarPubMed
Tottenham, N. (2015). Social scaffolding of human amygdala-mPFC circuit development. Social Neuroscience, 10, 489499. doi:10.1080/17470919.2015.1087424CrossRefGoogle Scholar
Tottenham, N. (2020). Early adversity and the neotenous human brain. Biological Psychiatry, 87, 350358. doi:10.1016/j.biopsych.2019.06.018CrossRefGoogle ScholarPubMed
Tottenham, N., & Gabard-Durnam, L. J. (2017). The developing amygdala: A student of the world and a teacher of the cortex. Current Opinion in Psychology, 17, 5560. doi:10.1016/j.copsyc.2017.06.012CrossRefGoogle Scholar
Tottenham, N., Hare, T. A., Millner, A., Gilhooly, T., Zevin, J. D., & Casey, B. J. (2011). Elevated amygdala response to faces following early deprivation. Developmental Science, 14, 190204. doi:10.1111/j.1467-7687.2010.00971.xCrossRefGoogle ScholarPubMed
Tottenham, N., Hare, T. A., Quinn, B. T., McCarry, T. W., Nurse, M., Gilhooly, T., … Casey, B. J. (2010). Prolonged institutional rearing is associated with atypically large amygdala volume and difficulties in emotion regulation. Developmental Science, 13, 4661. doi:10.1111/j.1467-7687.2009.00852.xCrossRefGoogle ScholarPubMed
Tottenham, N., Shapiro, M., Telzer, E. H., & Humphreys, K. L. (2012). Amygdala response to mother. Developmental Science, 15, 307319. doi:10.1111/j.1467-7687.2011.01128.xCrossRefGoogle Scholar
U.S. Department of Health & Human Services, Administration for Children and Families, Administration on Children, Youth and Families, Children’s Bureau. (2020). Retrieved from https://www.acf.hhs.gov/cb/research-data-technology/statistics-research/child-maltreatmentGoogle Scholar
van Harmelen, A. L., van Tol, M. J., Dalgleish, T., van der Wee, N. J., Veltman, D. J., Aleman, A., … Elzinga, B. M. (2014). Hypoactive medial prefrontal cortex functioning in adults reporting childhood emotional maltreatment. Social, Cognitive, and Affective Neuroscience, 9, 20262033. doi:10.1093/scan/nsu008CrossRefGoogle ScholarPubMed
van Harmelen, A. L., van Tol, M. J., van der Wee, N. J., Veltman, D. J., Aleman, A., Spinhoven, P., … Elzinga, B. M. (2010). Reduced medial prefrontal cortex volume in adults reporting childhood emotional maltreatment. Biological Psychiatry, 68, 832838. doi:10.1016/j.biopsych.2010.06.011CrossRefGoogle ScholarPubMed
van Rooij, S. J., Cross, D., Stevens, J. S., Vance, L. A., Kim, Y. J., Bradley, B., … Jovanovic, T. (2017). Maternal buffering of fear-potentiated startle in children and adolescents with trauma exposure. Social Neuroscience, 12, 2231. doi:10.1080/17470919.2016.1164244CrossRefGoogle ScholarPubMed
Vantieghem, M. R., Gabard-Durnam, L., Goff, B., Flannery, J., Humphreys, K. L., Telzer, E. H., … Tottenham, N. (2017). Positive valence bias and parent–child relationship security moderate the association between early institutional caregiving and internalizing symptoms. Development and Psychopathology, 29, 519533. doi:10.1017/S0954579417000153CrossRefGoogle ScholarPubMed
VanTieghem, M. R., & Tottenham, N. (2017). Neurobiological programming of early life stress: Functional development of amygdala-prefrontal circuitry and vulnerability for stress-related psychopathology. In Behavioral neurobiology of PTSD (pp. 117–136). Cham: Springer doi:10.1007/7854_2016_42CrossRefGoogle Scholar
Wagner, R. K., & Sternberg, R. J. (1984). Alternative conceptions of intelligence and their implications for education. Review of Educational Research, 54, 179223. doi:10.3102/00346543054002179CrossRefGoogle Scholar
Walker, C. D., Bath, K. G., Joels, M., Korosi, A., Larauche, M., Lucassen, P. J., … Baram, T. Z. (2017). Chronic early life stress induced by limited bedding and nesting (LBN) material in rodents: Critical considerations of methodology, outcomes and translational potential. Stress, 20, 421448. doi:10.1080/10253890.2017.1343296CrossRefGoogle ScholarPubMed
Wang, L., Dai, Z., Peng, H., Tan, L., Ding, Y., He, Z., … Li, L. (2014). Overlapping and segregated resting-state functional connectivity in patients with major depressive disorder with and without childhood neglect. Human Brain Mapping, 35, 11541166. doi:10.1002/hbm.22241CrossRefGoogle ScholarPubMed
Winocur, G., & Moscovitch, M. (2011). Memory transformation and systems consolidation. Journal of the International Neuropsychological Society, 17, 766780. doi:10.1017/S1355617711000683CrossRefGoogle ScholarPubMed
Wolfe, D. A., & McGee, R. (1994). Dimensions of child maltreatment and their relationship to adolescent adjustment. Development and Psychopathology, 6, 165181. doi:10.1017/S0954579400005939CrossRefGoogle Scholar
Wright, M. O., Crawford, E., & Del Castillo, D. (2009). Childhood emotional maltreatment and later psychological distress among college students: The mediating role of maladaptive schemas. Child Abuse and Neglect, 33, 5968. doi:10.1016/j.chiabu.2008.12.007CrossRefGoogle ScholarPubMed
Yan, C. G., Rincon-Cortes, M., Raineki, C., Sarro, E., Colcombe, S., Guilfoyle, D. N., … Castellanos, F. X. (2017). Aberrant development of intrinsic brain activity in a rat model of caregiver maltreatment of offspring. Translational Psychiatry, 7, e1005. doi:10.1038/tp.2016.276CrossRefGoogle Scholar
Young, J. E., Klosko, J. S., & Weishaar, M. E. (2003). Schema therapy: A practitioner's guide. New York: Guilford Press.Google Scholar
Ziabreva, I., Poeggel, G., Schnabel, R., & Braun, K. (2003). Separation-induced receptor changes in the hippocampus and amygdala of Octodon degus: Influence of maternal vocalizations. Journal of Neuroscience, 23, 53295336. doi:10.1523/JNEUROSCI.23-12-05329.2003CrossRefGoogle ScholarPubMed