Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T03:03:14.632Z Has data issue: false hasContentIssue false

Do positive and negative temperament traits interact in predicting risk for depression? A resting EEG study of 329 preschoolers

Published online by Cambridge University Press:  18 April 2011

Stewart A. Shankman*
Affiliation:
University of Illinois at Chicago
Daniel N. Klein
Affiliation:
Stony Brook University
Dana C. Torpey
Affiliation:
Stony Brook University
Thomas M. Olino
Affiliation:
Stony Brook University
Margaret W. Dyson
Affiliation:
Stony Brook University
Jiyon Kim
Affiliation:
Stony Brook University
C. Emily Durbin
Affiliation:
Michigan State University
Brady D. Nelson
Affiliation:
University of Illinois at Chicago
Craig E. Tenke
Affiliation:
New York State Psychiatric Institute
*
Address correspondence and reprint requests to: Stewart Shankman, Departments of Psychology and Psychiatry, Room 1062D, M/C 285, University of Illinois at Chicago, 1007 West Harrison, Chicago, IL 60607; E-mail: stewarts@uic.edu.

Abstract

Researchers have long been interested in whether particular temperamental traits in childhood connote risk for depressive disorders. For example, children characterized as having high negative emotionality (NE; sadness, fear, anger) and low positive emotionality (PE; anhedonia, listlessness, and lack of enthusiasm) are hypothesized to be at risk for depression. Few studies, however, have examined whether (and how) these two temperamental dimensions interact to confer risk. In a sample of 329 preschoolers, the present study addressed this question by examining the relation between PE and NE and asymmetry in resting EEG activity in frontal and posterior regions, which are putative biomarkers for depression. Using a laboratory battery to define temperament, we found an interaction of PE and NE on posterior asymmetry. Specifically, when PE was high, NE was associated with greater relative right activity. When PE was low, NE was not related to posterior asymmetry. These results were driven by differences in EEG activity in right posterior regions, an area associated with emotional processing and arousal, and were specific to girls. We found no relation between temperament and frontal asymmetry. These findings suggest that, at least for girls, PE and NE may have an interactive effect on risk for depression.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Thousand Oaks, CA: Sage.Google Scholar
Allen, J. J. B. (2009, October). Frontal EEG asymmetry as an endophenotype for depression: A skeptic's journey. Paper presented at the meeting of the Society for Psychophysiological Research, Berlin.Google Scholar
Allen, J. J. B., Coan, J. A., & Nazarian, M. (2004). Issues and assumptions on the road from raw signals to metrics of frontal EEG asymmetry in emotion. Biological Psychology, 67, 183218.CrossRefGoogle ScholarPubMed
Allen, J. J. B., Urry, H. L., Hitt, S. K., & Coan, J. A. (2004). Stability of resting frontal EEG asymmetry across different clinical states of depression. Psychophysiology, 41, 269280.CrossRefGoogle Scholar
American Electroencephalographic Society. (1994). American electroencephalographic society guidelines in electroencephalography, evoked potentials, and polysomnography. Journal of Clinical Neurophysiology, 11, 1142.Google Scholar
Anokhin, A. P., Heath, A. C., & Myers, E. (2006). Genetic and environmental influences on frontal EEG asymmetry: A twin study. Biological Psychology, 71, 289295.CrossRefGoogle ScholarPubMed
Blackhart, G. C., Kline, J. P., Donohue, K. F., LaRowe, S. D., & Joiner, T. E. (2002). Affective responses to EEG preparation and their link to resting anterior EEG asymmetry. Personality and Individual Differences, 32, 167174.CrossRefGoogle Scholar
Blackhart, G. C., Minnix, J. A., & Kline, J. P. (2006). Can EEG asymmetry patterns predict future development of anxiety and depression? A preliminary study. Biological Psychology, 72, 4650.CrossRefGoogle ScholarPubMed
Borod, J. C. (1992). Interhemispheric and intrahemispheric control of emotion: A focus on unilateral brain damage. Journal of Consulting and Clinical Psychology, 60, 339348.CrossRefGoogle ScholarPubMed
Bruder, G. E. (2003). Frontal and parietotemporal asymmetries in depressive disorders: Behavioral, electrophysiologic and neuroimaging findings. In Hugdahl, K. & Davidson, R. J. (Eds.), The asymmetrical brain (pp. 719742). Cambridge, MA: MIT Press.Google Scholar
Bruder, G. E., Fong, R., Tenke, C. E., Leite, P., Towey, J. P., Stewart, J. E., et al. (1997). Regional brain asymmetries in major depression with or without an anxiety disorder: A quantitative electroencephalographic study. Biological Psychiatry, 41, 939948.CrossRefGoogle ScholarPubMed
Bruder, G. E., Tenke, C. E., Warner, V., Nomura, Y., Grillon, C., Hille, J., et al. (2005). Electroencephalographic measures of regional hemispheric activity in offspring at risk for depressive disorders. Biological Psychiatry, 57, 328335.CrossRefGoogle ScholarPubMed
Bruder, G. E., Tenke, C. E., Warner, V., & Weissman, M. M. (2007). Grandchildren at high and low risk for depression differ in EEG measures of regional brain asymmetry. Biological Psychiatry, 62, 13171323.CrossRefGoogle ScholarPubMed
Calkins, S. D., Fox, N. A., & Marshall, T. R. (1996). Behavioral and physiological antecedents of inhibited and uninhibited behavior. Child Development, 67, 523540.CrossRefGoogle ScholarPubMed
Canli, T., Desmond, J. E., Zhao, Z., Glover, G., & Gabrieli, J. D. E. (1998). Hemispheric asymmetry for emotional stimuli detected with fMRI. NeuroReport, 9, 32333239.CrossRefGoogle ScholarPubMed
Caspi, A., Moffitt, T. E., Newman, D. L., & Silva, P. A. (1996). Behavioral observations at age 3 years predict adult psychiatric disorders. Archives of General Psychiatry, 53, 10331039.CrossRefGoogle ScholarPubMed
Chorpita, B. F. (2004). The tripartite model and dimensions of anxiety and depression: An examination of structure in a large school sample. Journal of Abnormal Child Psychology, 30, 177190.CrossRefGoogle Scholar
Chronis-Tuscano, A., Degnan, K. A,. Pine, D. S., Perez-Edgar, K., Henderson, H. A., Diaz, Y., et al. (2009). Stable early maternal report of behavioral inhibition predicts lifetime social anxiety disorder in adolescence. Journal of the American Academy of Child & Adolescent Psychiatry, 48, 928935.CrossRefGoogle ScholarPubMed
Cirino, P. T., Chin, C. E., Sevcik, R. A., Wolf, M., Lovett, M., & Morris, R. D. (2002). Measuring socioeconomic status: Reliability and preliminary validity for different approaches. Assessment, 9, 145155.CrossRefGoogle ScholarPubMed
Clark, L. A., & Watson, D. (1991). Tripartite model of anxiety and depression: Psychometric evidence and taxonomic implications. Journal of Abnormal Psychology, 100, 316336.CrossRefGoogle ScholarPubMed
Clark, L. A., & Watson, D. (1999). Temperament: A new paradigm for trait psychology. In Pervin, L. A. & John, O. P. (Eds.), Handbook of personality: Theory and research (2nd ed., pp. 399423). New York: Guilford Press.Google Scholar
Clark, L. A., Watson, D., & Mineka, S. (1994). Temperament, personality, and the mood and anxiety disorders. Journal of Abnormal Psychology, 103, 103116.CrossRefGoogle ScholarPubMed
Coan, J. A., Allen, J. J. B., & McKnight, P. E. (2006). A capability model of individual differences in frontal EEG asymmetry. Biological Psychology, 72, 198207.CrossRefGoogle ScholarPubMed
Costa, P. T., & McCrae, R. R. (1980). Influence of extraversion and neuroticism on subjective well-being: Happy and unhappy people. Journal of Personality and Social Psychology, 38, 668678.CrossRefGoogle ScholarPubMed
Davidson, R. J. (1994). Asymmetric brain function, affective style, and psychopathology: The role of early experience and plasticity. Development and Psychopathology, 6, 741758.CrossRefGoogle Scholar
Davidson, R. J. (1998). Affective style and affective disorders: Perspectives from affective neuroscience. Cognition & Emotion, 12, 307320.CrossRefGoogle Scholar
Davidson, R. J., & Fox, N. A. (1989). Frontal brain asymmetry predicts infants response to maternal separation. Journal of Abnormal Psychology, 98, 127131.CrossRefGoogle ScholarPubMed
Davidson, R. J., Jackson, D. C., & Larson, C. L. (2000). Human electroencephalography. In Cacioppo, J. T., Tassinary, L. G., & Berntson, G. G. (Eds.), Handbook of psychophysiology (2nd ed., pp. 2752). New York: Cambridge University Press.Google Scholar
Davidson, R. J., Lewis, D. A., Alloy, L. B., Amaral, D. G., Bush, G., Cohen, J. D., et al. (2002). Neural and behavioral substrates of mood and mood regulation. Biological Psychiatry, 52, 478502.CrossRefGoogle ScholarPubMed
Dawson, G., Frey, K., Self, J., Panagiotides, H., Hessl, D., Yamada, E., et al. (1999). Frontal brain electrical activity in infants of depressed and nondepressed mothers: Relation to variations in infant behavior. Development and Psychopathology, 11, 589605.CrossRefGoogle ScholarPubMed
Dawson, G., Panagiotides, H., Klinger, L. G., & Spieker, S. (1997). Infants of depressed and nondepressed mothers exhibit differences in frontal brain electrical activity during the expression of negative emotions. Developmental Psychology, 33, 650656.CrossRefGoogle ScholarPubMed
Demaree, H. A., Everhart, D. E., Youngstrom, E. A., & Harrison, D. W. (2005). Brain lateralization of emotional processing: Historical roots and a future incorporating “dominance.” Behavioral and Cognitive Neuroscience Reviews, 4, 320.CrossRefGoogle Scholar
Dougherty, L. R., Klein, D. N., Durbin, C. E., Hayden, E. P., & Olino, T. M. (2010). Temperamental positive and negative emotionality and children's depressive symptoms: A longitudinal prospective study from age three to age ten. Journal of Social and Clinical Psychology, 29, 462488.CrossRefGoogle Scholar
Dougherty, L. R., Klein, D. N., Olino, T. M., Dyson, M., & Rose, S. (2009). Increased waking salivary cortisol and depression risk in preschoolers: The role of maternal history of melancholic depression and early child temperament. Journal of Child Psychology and Psychiatry, 50, 14951503.CrossRefGoogle ScholarPubMed
Dunn, L. M., & Dunn, L. M. (1997). Peabody Picture Vocabulary Test (3rd ed.). Circle Pines, MN: American Guidance Service.Google Scholar
Durbin, C. E., Hayden, E. P., Klein, D. N., & Olino, T. M. (2007). Stability of laboratory-assessed temperamental emotionality traits from ages 3 to 7. Emotion, 7, 388399.CrossRefGoogle ScholarPubMed
Durbin, C. E., Klein, D. N., Hayden, E. P., Buckley, M. E., & Moerk, K. C. (2005). Temperamental emotionality in preschoolers and parental mood disorders. Journal of Abnormal Psychology, 114, 2837.CrossRefGoogle ScholarPubMed
Egger, H. L., Ascher, B., & Angold, A. (1999). The Preschool Age Psychiatric Assessment: Version 1.1. Durham, NC: Duke University Medical Center Center for Developmental Epidemiology, Department of Psychiatry and Behavioral Sciences.Google Scholar
Field, T., Pickens, J., Fox, N. A., & Nawrocki, T. (1995). Relative right frontal EEG activation in 3- to 6-month-old infants of “depressed” mothers. Developmental Psychology, 31, 358363.CrossRefGoogle Scholar
Fisch, B. J. (1999). Fisch and Spehlmann's EEG primer: Basic principles of digital and analog EEG. Amsterdam: Elsevier.Google Scholar
Fox, N. A., Bell, M. A., & Jones, N. A. (1992). Individual differences in response to stress and cerebral asymmetry. Developmental Neuropsychology, 8, 161184.CrossRefGoogle Scholar
Fox, N. A., Henderson, H. A., Marshall, P. J., Nichols, K. E., & Ghera, M. M. (2005). Behavioral inhibition: Linking biology and behavior within a developmental framework. Annual Review of Psychology, 56, 235262.CrossRefGoogle ScholarPubMed
Fox, N. A., Henderson, H. A., Rubin, K. H., Calkins, S. D., & Schmidt, L. A. (2001). Continuity and discontinuity of behavioral inhibition and exuberance: Psychophysiological and behavioral influences across the first four years of life. Child Development, 72, 121.CrossRefGoogle ScholarPubMed
Fox, N. A., Rubin, K. H., Calkins, S. D., Marshall, T. R., Coplan, R. J., Porges, S. W., et al. (1995). Frontal activation asymmetry and social competence at four years of age. Child Development, 66, 17701784.CrossRefGoogle ScholarPubMed
Garber, J. (2006). Depression in children and adolescents: Linking risk research and prevention. American Journal of Preventive Medicine, 31, S104S125.CrossRefGoogle ScholarPubMed
Gershuny, B. S., & Sher, K. J. (1998). The relation between personality and anxiety: Findings from a 3-year prospective study. Journal of Abnormal Psychology, 107, 252262.CrossRefGoogle ScholarPubMed
Goldsmith, H. H., Reilly, J., Lemery, K. S., Longley, S., & Prescott, A. (1995). Laboratory Temperament Assessment Battery: Preschool version. Unpublished manuscript.Google Scholar
Gotlib, I. H., Ranganath, C., & Rosenfeld, J. P. (1998). Frontal EEG alpha asymmetry, depression, and cognitive functioning. Cognition & Emotion, 12, 449478.CrossRefGoogle Scholar
Hagemann, D. (2004). Individual differences in anterior EEG asymmetry: Methodological problems and solutions. Biological Psychology, 67, 157182.CrossRefGoogle ScholarPubMed
Hankin, B. L., & Abramson, L. Y. (1999). Development of gender differences in depression: Description and possible explanations. Annals of Medicine, 31, 372379.CrossRefGoogle ScholarPubMed
Hankin, B. L., Abramson, L. Y., Moffitt, T. E., Silva, P. A., McGee, R., & Angell, K. E. (1998). Development of depression from preadolescence to young adulthood: Emerging gender differences in a 10-year longitudinal study. Journal of Abnormal Psychology, 107, 128140.CrossRefGoogle Scholar
Hayden, E. P., Klein, D. N., Durbin, C. E., & Olino, T. M. (2006). Positive emotionality at age 3 predicts cognitive styles in 7-year-old children. Development and Psychopathology, 18, 409423.CrossRefGoogle Scholar
Heller, W. (1990). The neuropsychology of emotion: Developmental patterns and implications for psychopathology. In Stein, N. L., Leventhal, B., & Trabasso, T. (Eds.), Psychological and biological approaches to emotion (pp. 167211). Hillsdale, NJ: Erlbaum.Google Scholar
Heller, W., Nitschke, J. B., & Miller, G. A. (1998). Lateralization in emotion and emotional disorders. Current Directions in Psychological Science, 7, 2632.CrossRefGoogle Scholar
Henriques, J. B., & Davidson, R. J. (1990). Regional brain electrical asymmetries discriminate between previously depressed and healthy control subjects. Journal of Abnormal Psychology, 99, 2231.CrossRefGoogle ScholarPubMed
Henriques, J. B., & Davidson, R. J. (1991). Left frontal hypoactivation in depression. Journal of Abnormal Psychology, 100, 535545.CrossRefGoogle ScholarPubMed
Hines, M. (2004). Brain gender. New York: Oxford University Press.Google Scholar
Hirschfeld-Becker, D. R., Micco, J., Henin, A., Bloomfield, A., Biederman, J., & Rosenbaum, J. (2008). Behavioral inhibition. Depression and Anxiety, 25, 357367.CrossRefGoogle Scholar
Hollingshead, A. B. (1975). Four Factor Index of Social Status. Unpublished manuscript.Google Scholar
Holmbeck, G. N. (2002). Post-hoc probing of significant moderational and mediational effects in studies of pediatric populations. Journal of Pediatric Psychology, 27, 8796.CrossRefGoogle ScholarPubMed
Izard, C. E., Dougherty, L. M., & Hembree, E. A. (1989). A system for identifying facial expressions by holistic judgment (AFFEX). Newark, NJ: University of Delaware Media Services.Google Scholar
Jacobs, G. D., & Snyder, D. (1996). Frontal brain asymmetry predicts affective style in men. Behavioral Neuroscience, 110, 36.CrossRefGoogle ScholarPubMed
Jacques, H. A. K., & Mash, E. J. (2004). A test of the tripartite model of anxiety and depression in elementary and high school boys and girls. Journal of Abnormal Child Psychology, 32, 1325.CrossRefGoogle ScholarPubMed
Jones, N. A., Field, T., Davalos, M., & Pickens, J. (1997). EEG stability in infants/children of depressed mothers. Child Psychiatry & Human Development, 28, 5970.CrossRefGoogle ScholarPubMed
Jones, N. A., Field, T., Fox, N. A., Lundy, B., & Davalos, M. (1997). EEG activation in 1-month-old infants of depressed mothers. Development and Psychopathology, 9, 491505.CrossRefGoogle ScholarPubMed
Kagan, J., & Snidman, N. (1999). Early childhood predictors of adult anxiety disorders. Biological Psychiatry, 46, 15361541.CrossRefGoogle ScholarPubMed
Karevold, E., Røysamb, E., Ystrom, E., & Mathiesen, K. S. (2009). Predictors and pathways from infancy to symptoms of anxiety and depression in early adolescence. Developmental Psychology, 45, 10511060.CrossRefGoogle ScholarPubMed
Kayser, J. (2003). Polygraphic Recording Data Exchange—PolyRex. New York State Psychiatric Institute: Department of Biopsychology. Retrieved from http://psychophysiology.cpmc.columbia.edu/PolyRex.htmGoogle Scholar
Kayser, J., Bruder, G. E., Tenke, C. E., Stewart, J. W., & Quitkin, F. M. (2000). Event-related potentials (ERPs) to hemifield presentations of emotional stimuli: Differences between depressed patients and healthy adults in P3 amplitude and asymmetry. International Journal of Psychophysiology, 36, 211236.CrossRefGoogle ScholarPubMed
Kendler, K. S., Gatz, M., Gardner, C. O., & Pedersen, N. L. (2006a). Personality and major depression: A Swedish longitudinal, population-based twin study. Archives of General Psychiatry, 63, 11131120.CrossRefGoogle ScholarPubMed
Kendler, K. S., Gatz, M., Gardner, C. O., & Pedersen, N. L. (2006b). A Swedish national twin study of lifetime major depression. American Journal of Psychiatry, 163, 109114.CrossRefGoogle ScholarPubMed
Kendler, K. S., Neale, M. C., Kessler, R. C., Heath, A. C., & Eaves, L. J. (1993). A longitudinal twin study of personality and major depression in women. Archives of General Psychiatry, 50, 853862.CrossRefGoogle ScholarPubMed
Kentgen, L. M., Tenke, C. E., Pine, D. S., Fong, R., Klein, R. G., & Bruder, G. E. (2000). Electroencephalographic asymmetries in adolescents with major depression: Influence of comorbidity with anxiety disorders. Journal of Abnormal Psychology, 109, 797802.CrossRefGoogle ScholarPubMed
Killgore, W. D. S., & Yurgelun-Todd, D. A. (2007). The right-hemisphere and valence hypotheses: Could they both be right (and sometimes left)? Social Cognitive and Affective Neuroscience, 2, 240250.CrossRefGoogle ScholarPubMed
Kreibig, S. D., Wilhelm, F. H., Roth, W. T., & Gross, J. J. (2007). Cardiovascular, electrodermal, and respiratory response patterns to fear- and sadness-inducing films. Psychophysiology, 44, 787806.CrossRefGoogle ScholarPubMed
Lewis, M., Ramsay, D. S., & Sullivan, M. W. (2006). The relation of ANS and HPA activation to infant anger and sadness response to goal blockage. Developmental Psychobiology, 48, 397405.CrossRefGoogle ScholarPubMed
Marshall, P. J., Bar-Haim, Y., & Fox, N. A. (2002). Development of the EEG from 5 months to 4 years of age. Clinical Neurophysiology, 113, 11991208.CrossRefGoogle ScholarPubMed
Mathersul, D., Williams, L. M., Hopkinson, P. J., & Kemp, A. H. (2008). Investigating models of affect: Relationships among EEG alpha asymmetry, depression, and anxiety. Emotion, 8, 560572.CrossRefGoogle ScholarPubMed
McManis, M. H., Kagan, J., Snidman, N. C., & Woodward, S. A. (2002). EEG asymmetry, power, and temperament in children. Developmental Psychobiology, 41, 169177.CrossRefGoogle ScholarPubMed
Metzger, L. J., Paige, S. R., Carson, M. A., Lasko, N. B., Paulus, L. A., Pitman, R. K., et al. (2004). PTSD arousal and depression symptoms associated with increased right-sided parietal EEG asymmetry. Journal of Abnormal Psychology, 113, 324329.CrossRefGoogle ScholarPubMed
Middeldorp, C. M., Cath, D. C., Van Dyck, R., & Boomsma, D. I. (2005). The co-morbidity of anxiety and depression in the perspective of genetic epidemiology: A review of twin and family studies. Psychological Medicine, 35, 611624.CrossRefGoogle ScholarPubMed
Miller, A., Fox, N. A., Cohn, J. F., Forbes, E. E., Sherrill, J. T., & Kovacs, M. (2002). Regional patterns of brain activity in adults with a history of childhood-onset depression: Gender differences and clinical variability. American Journal of Psychiatry, 159, 934940.CrossRefGoogle ScholarPubMed
Nitschke, J. B., Heller, W., Palmieri, P. A., & Miller, G. A. (1999). Contrasting patterns of brain activity in anxious apprehension and anxious arousal. Psychophysiology, 36, 628637.CrossRefGoogle ScholarPubMed
Nolen-Hoeksema, S., & Hilt, L. M. (2009). Gender differences in depression. In Gotlib, I. H. & Hammen, C. L. (Eds.), Handbook of depression (2nd ed., pp. 386404). New York: Guilford Press.Google Scholar
Oishi, N., Mima, T., Ishii, K., Bushara, K. O., Hiraoka, T., Uekl, Y., et al. (2007). Neural correlates of regional EEG power change. NeuroImage, 36, 13011312.CrossRefGoogle ScholarPubMed
Olino, T. M., Klein, D. N., Dyson, M. W., Rose, S. A., & Durbin, C. E. (2010). Temperamental emotionality in preschool-aged children and depressive disorders in parents: Associations in a large community sample. Journal of Abnormal Psychology, 119, 468478.CrossRefGoogle Scholar
Ollendick, T. H., Seligman, L. D., Goza, A. B., Byrd, D. A., & Singh, K. (2003). Anxiety and depression in children and adolescents: A factor-analytic examination of the tripartite model. Journal of Child and Family Studies, 12, 157170.CrossRefGoogle Scholar
Ormel, J., Oldehinkel, A. J., & Vollebergh, W. (2004). Vulnerability before, during, and after a major depressive episode. Archives of General Psychiatry, 61, 990996.CrossRefGoogle ScholarPubMed
Ottowitz, W. E., Dougherty, D. D., Sirota, A., Niaura, R., Rauch, S. L., & Brown, W. A. (2004). Neural and endocrine correlates of sadness in women: Implications for neural network regulation of HPA activity. Journal of Neuropsychiatry and Clinical Neurosciences, 16, 446455.CrossRefGoogle ScholarPubMed
Pizzagalli, D. A., Nitschke, J. B., Oakes, T. R., Hendrick, A. M., Horras, K. A., Larson, C. L., et al. (2002). Brain electrical tomography in depression: The importance of symptom severity, anxiety, and melancholic features. Biological Psychiatry, 52, 7385.CrossRefGoogle ScholarPubMed
Pössel, P., Lo, H., Fritz, A., & Seemann, S. (2008). A longitudinal study of cortical EEG activity in adolescents. Biological Psychology, 78, 173178.CrossRefGoogle ScholarPubMed
Reid, S. A., Duke, L. M., & Allen, J. J. B. (1998). Resting frontal electroencephalographic asymmetry in depression: Inconsistencies suggest the need to identify mediating factors. Psychophysiology, 35, 389404.CrossRefGoogle ScholarPubMed
Reinherz, H. Z., Paradis, A. D., Giaconia, R. M., Stashwick, C. K., & Fitzmaurice, G. (2003). Childhood and adolescent predictors of major depression in the transition to adulthood. American Journal of Psychiatry, 160, 21412146.CrossRefGoogle ScholarPubMed
Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39, 11611178.CrossRefGoogle Scholar
Schmidtke, J. I., & Heller, W. (2004). Personality, affect and EEG: Predicting patterns of regional brain activity related to extraversion and neuroticism. Personality and Individual Differences, 36, 717732.CrossRefGoogle Scholar
Scullin, M. H., & Bonner, K. (2006). Theory of mind, inhibitory control, and preschool-age children's suggestibility in different interviewing contexts. Journal of Experimental Child Psychology, 93, 120138.CrossRefGoogle ScholarPubMed
Shankman, S. A., & Klein, D. N. (2003). The relation between depression and anxiety: An evaluation of the tripartite, approach-withdrawal and valence-arousal models. Clinical Psychology Review, 23, 605637.CrossRefGoogle ScholarPubMed
Shankman, S. A., Klein, D. N., Tenke, C. E., & Bruder, G. E. (2007). Reward sensitivity in depression: A biobehavioral study. Journal of Abnormal Psychology, 116, 95104.CrossRefGoogle ScholarPubMed
Shankman, S. A., Tenke, C. E., Bruder, G. E., Durbin, C. E., Hayden, E. P., & Klein, D. N. (2005). Low positive emotionality in young children: Association with EEG asymmetry. Development and Psychopathology, 17, 8598.CrossRefGoogle ScholarPubMed
Smit, D. J. A., Posthuma, D., Boomsma, D. I., & De Geus, E. J. C. (2007). The relation between frontal EEG asymmetry and the risk for anxiety and depression. Biological Psychology, 74, 2633.CrossRefGoogle ScholarPubMed
Somsen, R. J. M., & van Beek, B. (1998). Ocular artifacts in children's EEG: Selection is better than correction. Biological Psychology, 48, 281300.CrossRefGoogle ScholarPubMed
Stewart, J. L., Bismark, A. W., Towers, D. N., Coan, J. A., & Allen, J. J. B. (2009). Resting frontal EEG asymmetry as an endophenotype for depression risk: Sex-specific patterns of frontal brain asymmetry. Psychophysiology, 46, S24S24.Google Scholar
Tackett, J. L. (2006). Evaluating models of the personality–psychopathology relationship in children and adolescents. Clinical Psychology Review, 26, 584599.CrossRefGoogle ScholarPubMed
Tenke, C. E., & Kayser, J. (2005). Reference-free quantification of EEG spectra: Combining current source density (CSD) and frequency principal components analysis (fPCA). Clinical Neurophysiology, 116, 28262846.CrossRefGoogle ScholarPubMed
Thibodeau, R., Jorgensen, R. S., & Kim, S. (2006). Depression, anxiety, and resting frontal EEG asymmetry: A meta-analytic review. Journal of Abnormal Psychology, 115, 715729.CrossRefGoogle ScholarPubMed
Tomarken, A. J., Davidson, R. J., Wheeler, R. E., & Doss, R. C. (1992). Individual differences in anterior brain asymmetry and fundamental dimensions of emotion. Journal of Personality and Social Psychology, 62, 676687.CrossRefGoogle ScholarPubMed
Tomarken, A. J., Davidson, R. J., Wheeler, R. E., & Kinney, L. (1992). Psychometric properties of resting anterior EEG asymmetry: Temporal stability and internal consistency. Psychophysiology, 29, 576592.CrossRefGoogle ScholarPubMed
Tomarken, A. J., Dichter, G. S., Garber, J., & Simien, C. (2004). Resting frontal brain activity: Linkages to maternal depression and socio-economic status among adolescents. Biological Psychology, 67, 77102.CrossRefGoogle ScholarPubMed
Tomarken, A. J., & Keener, A. D. (1998). Frontal brain asymmetry and depression: A self-regulatory perspective. Cognition & Emotion, 12, 387420.CrossRefGoogle Scholar
Tugade, M. M., & Fredrickson, B. L. (2004). Resilient individuals use positive emotions to bounce back from negative emotional experiences. Journal of Personality and Social Psychology, 86, 320333.CrossRefGoogle ScholarPubMed
Vuga, M., Fox, N. A., Cohn, J. F., Kovacs, M., & George, C. J. (2008). Long-term stability of electroencephalographic asymmetry and power in 3 to 9 year-old children. International Journal of Psychophysiology, 67, 7077.CrossRefGoogle ScholarPubMed
Watson, D., & Tellegen, A. (1985). Toward a consensual structure of mood. Psychological Bulletin, 98, 219235.CrossRefGoogle Scholar
Weissman, M. M., Wickramaratne, P., Nomura, Y., Warner, V., Verdeli, H., Pilowsky, D. J., et al. (2005). Families at high and low risk for depression: A 3-generation study. Archives of General Psychiatry, 62, 2936.CrossRefGoogle ScholarPubMed
Wetter, E. K., & Hankin, B. L. (2009). Mediational pathways through which positive and negative emotionality contribute to anhedonic symptoms of depression: A prospective study of adolescents. Journal of Abnormal Child Psychology, 37, 507520.CrossRefGoogle ScholarPubMed
Wichers, M. C., Myin-Germeys, I., Jacobs, N., Peeters, F., Kenis, G., Derom, C., et al. (2007). Evidence that moment-to-moment variation in positive emotions buffer genetic risk for depression: A momentary assessment twin study. Acta Psychiatrica Scandinavica, 115, 451457.CrossRefGoogle ScholarPubMed