Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T21:37:00.481Z Has data issue: false hasContentIssue false

Childhood adversity, externalizing behavior, and substance use in adolescence: Mediating effects of anterior cingulate cortex activation during inhibitory errors

Published online by Cambridge University Press:  26 December 2018

Nicole M. Fava*
Affiliation:
Robert Stempel College of Public Health & Social Work, Florida International University Center for Children and Families, Florida International University
Elisa M. Trucco
Affiliation:
Center for Children and Families, Florida International University Department of Psychology, Florida International University Department of Psychiatry, University of Michigan, Ann Arbor
Meghan E. Martz
Affiliation:
Department of Psychiatry, University of Michigan, Ann Arbor
Lora M. Cope
Affiliation:
Department of Psychiatry, University of Michigan, Ann Arbor
Jennifer M. Jester
Affiliation:
Department of Psychiatry, University of Michigan, Ann Arbor
Robert A. Zucker
Affiliation:
Department of Psychiatry, University of Michigan, Ann Arbor
Mary M. Heitzeg
Affiliation:
Department of Psychiatry, University of Michigan, Ann Arbor
*
Author for correspondence: Nicole M. Fava, Florida International University, 11200 S.W. 8th Street, AHC5-566, Miami, FL 33199; Email: nfava@fiu.edu.

Abstract

Childhood adversity can negatively impact development across various domains, including physical and mental health. Adverse childhood experiences have been linked to aggression and substance use; however, developmental pathways to explain these associations are not well characterized. Understanding early precursors to later problem behavior and substance use can inform preventive interventions. The aim of the current study was to examine neurobiological pathways through which childhood adversity may lead to early adolescent problem behavior and substance use in late adolescence by testing two prospective models. Our first model found that early adolescent externalizing behavior mediates the association between childhood adversity and alcohol, cigarette, and marijuana use in late adolescence. Our second model found that activation in the anterior cingulate cortex (ACC) during an inhibitory control task mediates the association between childhood adversity and early adolescent externalizing behavior, with lower ACC activation associated with higher levels of adversity and more externalizing behavior. Together these findings indicate that the path to substance use in late adolescence from childhood adversity may operate through lower functioning in the ACC related to inhibitory control and externalizing behavior. Early life stressors should be considered an integral component in the etiology and prevention of early and problematic substance use.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achenbach, T. M. (1991). Manual for the Youth Self-Report for ages 11–18. Burlington, VT: University of Vermont, Department of Psychiatry.Google Scholar
Allman, J. M., Hakeem, A., Erwin, J. M., Nimchinsky, E., & Hof, P. (2001). The anterior cingulate cortex: The evolution of an interface between emotion and cognition. Annals of the New York Academy of Sciences, 935, 107117.Google Scholar
Anda, R. F., Croft, J. B., Felitti, V. J., Nordenberg, D., Giles, W. H., Williamson, D. F., & Giovino, G. A. (1999). Adverse childhood experiences and smoking during adolescence and adulthood. Journal of the American Medical Association, 282, 16521658. doi:10.1001/jama.282.17.1652Google Scholar
Baglivio, M. T., Wolff, K. T., Piquero, A. R., & Epps, N. (2015). The relationship between adverse childhood experiences (ACE) and juvenile offending trajectories in a juvenile offender sample. Journal of Criminal Justice, 43, 229241. doi:10.1016/j.jcrimjus.2015.04.012Google Scholar
Belsky, J., & de Haan, M. (2011). Annual research review: Parenting and children's brain development: The end of the beginning [Review]. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 52, 409428. doi:10.1111/j.1469-7610.2010.02281.xGoogle Scholar
Bick, J., & Nelson, C. A. (2016). Early adverse experiences and the developing brain. Neuropsychopharmacology Reviews, 41, 177196. doi:10.1038/npp.2015.252Google Scholar
Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8, 539546.Google Scholar
Brett, M., Anton, J. L., Valabregue, R., & Poline, J. B. (2002) Region of interest analysis using an SPM toolbox. Paper presented at the 8th International Conference on Functional Mapping of the Human Brain, Sendai, Japan, June 2–6, 2002. Available on CD-ROM in Neuroimage, Vol. 16, No. 2.Google Scholar
Brown, S. M., & Schillington, A. M. (2017). Childhood adversity and the risk of substance use and delinquency: The role of protective adult relationships. Child Abuse & Neglect, 63, 211221. doi:10.1016/j.chiabu.2016.11.006Google Scholar
Bruce, J., Fisher, P. A., Graham, A. M., Moore, W. E., Peake, S. J., & Mannering, A. M. (2013). Patterns of brain activation in foster children and nonmaltreated children during an inhibitory control task. Developmental Psychopathology, 25, 931941.Google Scholar
Carliner, H., Gary, D., McLaughlin, K. A., & Keyes, K. M. (2017). Trauma exposure and externalizing disorders in adolescents: Results From the National Comorbidity Survey Adolescent Supplement. Journal of the American Academy of Child & Adolescent Psychiatry, 56, 755764. doi:10.1016/j.jaac.2017.06.006Google Scholar
Carter, C. S., Braver, T. S., Barch, D. M., Botvinick, M. M., Noll, D., & Cohen, J. D. (1998). Anterior cingulate cortex, error detection, and the online monitoring of performance. Science, 280, 747749.Google Scholar
Chapman, D. P., Liu, Y., Presley-Cantrell, L. R., Edwards, V. J., Wheaton, A. G., Perry, G. S., & Croft, J. B. (2013). Adverse childhood experiences and frequent insufficient sleep in 5 U.S. States, 2009: A retrospective cohort study. BMC Public Health, 13.Google Scholar
Chartier, M. J., Walker, J. R., & Naimark, B. (2010). Separate and cumulative effects of adverse childhood experiences in predicting adult health and health care utilization. Child Abuse & Neglect, 34, 454464.Google Scholar
Chassin, L., Pitts, S. C., DeLucia, C., & Todd, M. (1999). A longitudinal study of children of alcoholics: Predicting young adult substance use disorders, anxiety, and depression. Journal of Abnormal Psychology, 108, 106119.Google Scholar
Chung, I. J., Hill, K. G., Hawkins, J., Gilchrist, L. D., & Nagin, D. S. (2002). Childhood predictors of offense trajectories. Journal of Research in Crime and Delinquency, 39, 6090. doi:10.1177/002242780203900103Google Scholar
Cicchetti, D. (2013). Annual research review: Resilient functioning in maltreated children—Past, present, and future perspectives. Journal of Child Psychology and Psychiatry, 54, 402422.Google Scholar
Coddington, R. D. (1972a). The significance of life events as etiologic factors in the diseases of children I—A survey of professional workers. Journal of Psychosomatic Research, 16, 718.Google Scholar
Coddington, R. D. (1972b). The significance of life events as etiologic factors in the diseases of children II—A study of a normal population. Journal of Psychosomatic Research, 16, 206213.Google Scholar
Cohen, J. A., Mannarino, A. P., Jankowski, K., Rosenberg, S., Kodya, S., & Woldford II, G. L. (2016). A randomized implementation study of Trauma-Focused Cognitive Behavioral Therapy for adjudicated teens in residential treatment facilities. Child Maltreatment, 21, 156167. doi:10.1177/1077559515624775Google Scholar
Cook, A., Spinazzola, J., Ford, J., Lanktree, C., Blaustein, M., Cloitre, M., … van der Kolk, B. (2005). Complex trauma in children and adolescents. Psychiatric Annals, 35, 390398.Google Scholar
Crane, N. A., Schuster, R. M., Fusar-Poli, P., & Gonzalez, R. (2013). Effects of cannabis on neurocognitive functioning: Recent advances, neurodevelopmental influences, and sex differences. Neuropsychology Review, 23, 117137. doi:10.1007/s11065-012-9222-1Google Scholar
Danese, A., & McEwen, B. S. (2012). Adverse childhood experiences, allostasis, allostatic load, and age-related disease. Physiology & Behavior, 106, 2939. doi:10.1016/j.physbeh.2011.08.019Google Scholar
David, S. P., Ware, J. J., Chu, I. M., Loftus, P. D., Fusar-Poli, P., Radua, J., … Ioannidis, J. P. A. (2013). Potential reporting bias in fMRI studies of the brain. PLOS ONE, 8, e70104. doi:10.1371/journal.pone.0070104Google Scholar
Devito, E. E., Meda, S. A., Jiantonio, R., Potenza, M. N., Krystal, J. H., & Pearlson, G. D. (2013). Neural correlates of impulsivity in healthy males and females with histories of alcoholism. Neuropsychopharmacology, 38, 18541863.Google Scholar
Dodge, K. A., Malone, P. S., Lansford, J. E., Miller, S., Pettit, G. S., & Bates, J. E. (2009). A dynamic cascade model of the development of substance-use onset. Monographs of the Society for Research in Child Development, 74, 1134.Google Scholar
Dube, S. R., Felitti, V. J., Dong, M., Chapman, D. P., Giles, W. H., & Anda, R. F. (2003). Childhood abuse, neglect, and household dysfunction and the risk of illicit drug use: The Adverse Childhood Experiences Study. Pediatrics, 111, 564572. doi.10.1542/peds.111.3.564Google Scholar
Dube, S. R., Miller, J. W., Brown, D. W., Giles, W. H., Felitti, V. J., Dong, M., & Anda, R. F. (2006). Adverse childhood experiences and the association with ever using alcohol and initiating alcohol use during adolescence. Journal of Adolescent Health, 38, 444.e1444.e10. doi:10.1016/j.jadohealth.2005.06.006Google Scholar
Durston, S., Thomas, K. M., Worden, M. S., Yang, Y., & Casey, B. J. (2002). The effect of preceding context on inhibition: An event-related fMRI study. Neuroimage, 16, 449453.Google Scholar
Evans, G. W., Li, D., & Sepanski Whipple, S. (2013, April 8). Cumulative risk and child development. Psychological Bulletin. Advance online publication. doi:10.1037/a0031808Google Scholar
Felitti, V. J., Anda, R. F., Nordenberg, D., Williamson, D. F., Spitz, A. M., Edwards, V., … Marks, J. S. (1998). The relationship of adult health status to childhood abuse and household dysfunction. American Journal of Preventive Medicine, 14, 245258.Google Scholar
Fessler, J., Lee, S., Olafsson, V., Shi, H., & Noll, D. (2005). Toeplitz-based iterative image reconstruction for MRI with correction for magnetic field in homogeneity. IEEE Transactions on Signal Processing, 53, 33933402.Google Scholar
Finkelhor, D., Shattuck, A., Turner, H., & Hamby, S. (2015). A revised inventory of adverse childhood experiences. Child Abuse & Neglect, 48, 1321. doi.org/10.1016/j.chiabu.2015.07.011Google Scholar
Fox, S. E., Levitt, P., & Nelson, C. A. (2010). How the timing and quality of early experiences influence the development of brain architecture. Child Development, 81, 2840.Google Scholar
Garavan, H., Ross, T. J., Murphy, K., Roche, R. A., & Stein, E. A. (2002). Dissociable executive functions in the dynamic control of behavior: Inhibition, error detection, and correction. Neuroimage, 17, 18201829.Google Scholar
Glover, G. H., & Law, C. S. (2001). Spiral-in/out BOLD fMRI for increased SNR and reduced susceptibility artifacts. Magnetic Resonance in Medicine, 46, 515522.Google Scholar
Gowin, J. L., Stewart, J. L., May, A. C., Ball, T. M., Wittmann, M., Tapert, S. F., & Paulus, M. P. (2014). Altered cingulate and insular cortex activation during risk-taking in methamphetamine dependence: Losses lose impact. Addiction, 109, 237247.Google Scholar
Grassi-Oliveira, R., Ashy, M., & Stein, L. M. (2008). Psychobiology of childhood maltreatment: Effects of allostatic load? Revista Brasileira de Psiquiatria, 30, 6068.Google Scholar
Hall, J. R., Bernat, E. M., & Patrick, C. J. (2007). Externalizing psychopathology and the error-related negativity. Psychological Science, 18, 326333.Google Scholar
Heitzeg, M. M., Nigg, J. T., Hardee, J. E., Soules, M., Steinberg, D., Zubieta, J. K., & Zucker, R. A. (2014). Left middle frontal gyrus response to inhibitory errors in children prospectively predicts early problem substance use. Drug and Alcohol Dependence, 141, 5157.Google Scholar
Hoefler, A., Athenstaedt, U., Corcoran, K., Ebner, F., & Ischebeck, A. (2015). Coping with self-threat and the evaluation of self-related traits: An fMRI study. PLOS ONE, 10, e0136027. doi:10.1371/journal.pone.0136027Google Scholar
Hussong, A. M., Bauer, D. J., Huang, W., Chassin, L., Sher, K. J., & Zucker, R. A. (2008). Characterizing the life stressors of children of alcoholic parents. Journal of Family Psychology, 22, 819832.Google Scholar
Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage, 17, 825841.Google Scholar
Johnston, L. D., O'Malley, P. M., Miech, R. A., Bachman, J. G., & Schulenberg, J. E. (2017). Monitoring the Future National Survey Results on Drug Use, 1975–2016: Overview, key findings on adolescent drug use. Ann Arbor, MI: University of Michigan, Institute for Social Research.Google Scholar
Kalmakis, K. A., & Chandler, G. E. (2015). Health consequences of adverse childhood experiences: A systematic review. Journal of the American Association of Nurse Practitioners, 27, 457465. doi:10.1002/2327-6924.12215Google Scholar
Keiley, M. K., Howe, T. R., Dodge, K. A., Bates, J. E., & Petti, G. S. (2001). The timing of child physical maltreatment: A cross-domain growth analysis of impact on adolescent externalizing and internalizing problems. Development and Psychopathology, 13, 891912.Google Scholar
Khoury, L., Tang, Y. L., Bradley, B., Cubells, J. F., & Ressler, K. J. (2010). Substance use, childhood traumatic experience, and posttraumatic stress disorder in an urban civilian population. Depression and Anxiety, 27, 10771086. doi.10.1002/da.20751Google Scholar
Kiehl, K. A., Liddle, P. F., & Hopfinger, J. B. (2000). Error processing and the rostral anterior cingulate: An event-related fMRI study. Psychophysiology, 37, 216223.Google Scholar
King, K. M., & Chassin, L. (2004). Mediating and moderated effects of adolescent behavioral undercontrol and parenting in the prediction of drug use disorders in emerging adulthood. Psychology of Addictive Behaviors, 18, 239249.Google Scholar
Loman, M. M., Johnson, A. E., Westerlund, A., Pollak, S. D., Nelson, C. A., & Gunnar, M. R. (2013). The effect of early deprivation on executive attention in middle childhood. Journal of Child Psychology and Psychiatry, 54, 3745. doi:10.1111/j.1469-7610.2012.02602.xGoogle Scholar
Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10, 434445. doi:10.1038/nrn2639Google Scholar
Marchand, W. R. (2014). Neural mechanisms of mindfulness and meditation: Evidence from neuroimaging studies. World Journal of Radiology, 6, 471479. doi:10.4329/wjr.v6.i7.471Google Scholar
McCrory, E. J., Gerin, M. I., & Viding, E. (2017). Annual Research Review: Childhood maltreatment, latent vulnerability and the shift to preventative psychiatry—The contribution of functional brain imaging. Journal of Child Psychology and Psychiatry, 58, 338357. doi:10.1111/jcpp.12713Google Scholar
McCrory, E. J., & Viding, E. (2015). The theory of latent vulnerability: Reconceptualizing the link between childhood maltreatment and psychiatric disorder. Development and Psychopathology, 27, 493505.Google Scholar
McDermott, J. M., Westerlund, A., Zeanah, C. H., Nelson, C. A., & Fox, N. A. (2012). Early adversity and neural correlates of executive function: Implications for academic adjustment. Developmental Cognitive Neuroscience, 15, S59S66. doi:10.1016/j.dcn.2011.09.008Google Scholar
McEwen, B. S. (2017). Neurobiological and systemic effects of chronic stress. Chronic Stress, 1, 111. doi:10.1177/2470547017692328Google Scholar
McEwen, B. S., & Stellar, E. (1993). Stress and the individual: Mechanisms leading to disease. Archives of Internal Medicine, 153, 20932101.Google Scholar
McLaughlin, K. A., & Sheridan, M. A. (2016). Beyond cumulative risk: A dimensional approach to childhood adversity. Current Directions in Psychological Science, 25, 239245. doi:10.1177/0963721416655883Google Scholar
McLaughlin, K. A., Sheridan, M. A., & Lambert, H. K. (2014). Childhood adversity and neural development: Deprivation and threat as distinct dimensions of early experience. Neuroscience & Biobehavioral Reviews, 47, 578591.Google Scholar
Meaney, M. J. (2010). Epigenetics and the biological definition of gene x environment interactions. Child Development, 81, 4179.Google Scholar
Menon, V., Adleman, N. E., White, C. D., Glover, G. H., & Reiss, A. L. (2001). Error-related brain activation during a Go/NoGo response inhibition task. Human Brain Mapping, 12, 131143.Google Scholar
Mersky, J. P., Topitzes, J., & Reynolds, A. J. (2013). Impacts of adverse childhood experiences on health, mental health, and substance use in early adulthood: A cohort study of an urban, minority sample in the U.S. Child Abuse & Neglect, 37, 917925.Google Scholar
Miller, P., & Plant, M. (2002). Heavy cannabis use among UK teenagers: An exploration. Drug and Alcohol Dependence, 65, 235242.Google Scholar
Mitchell, K. J., Tynes, B., Umaña-Taylor, A. J., & Williams, D. (2015). Cumulative experiences with life adversity: Identifying critical levels for targeting prevention efforts. Journal of Adolescence, 43, 6371. doi:10.1016/j.adolescence.2015.05.008Google Scholar
Morgan, C. A., & LeDoux, J. E. (1995). Differential contribution of dorsal and ventral medial prefrontal cortex to the acquisition and extinction of conditioned fear in rats. Behavioural Neuroscience, 109, 681688.Google Scholar
Morgan, C. A., Romanski, L. M., & LeDoux, J. E. (1993). Extinction of emotional learning: Contribution of medial prefrontal cortex. Neuroscience Letters, 163, 109113.Google Scholar
Muthén, L. K., & Muthén, B. O. (1998–2017). Mplus user's guide (7th ed). Los Angeles: Author.Google Scholar
Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia, 9, 97113.Google Scholar
Oshri, A., Rogosch, F. A., Burnette, M., & Cicchetti, D. (2011). Developmental pathways to adolescent cannabis abuse and dependence: Child maltreatment, emerging personality, and internalizing versus externalizing psychopathology. Psychology of Addictive Behaviors, 25, 634644. doi:10.1037/a0023151Google Scholar
Parra, G. R., Smith, G. L., Mason, W. A., Savolainen, J., Chmelka, M. N., Miettunen, J., & Järvelin, M. (2017). Tests of linear and nonlinear relations between cumulative contextual risk at birth and psychosocial problems during adolescence. Journal of Adolescence, 60, 6473. doi:10.1016/j.adolescence.2017.07.010Google Scholar
Patterson, G. R. (1982). Coercive family process (Vol. 3). Eugene, OR: Castalia Publishing.Google Scholar
Paus, T., Petrides, M., Evans, A. C., & Meyer, E. (1993). Role of the human anterior cingulate cortex in the control of oculomotor, manual, and speech responses: A positron emission tomography study. Journal of Neurophysiology, 70, 453469.Google Scholar
Pechtel, P., & Pizzagalli, D. A. (2011). Effects of early life stress on cognitive and affective function: An integrated review of human literature. Psychopharmacology, 214, 5570.Google Scholar
Posner, M. I., Rothbart, M. K., Sheese, B. E., & Tang, Y. (2007). The anterior cingulate gyrus and the mechanism of self-regulation. Cognitive, Affective, & Behavioral Neuroscience, 7, 391395.Google Scholar
Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40, 879891. doi:10.3758/BRM.40.3.879Google Scholar
Puetz, V. B., & McCrory, E. (2017). Exploring the relationship between childhood maltreatment and addiction: A review of the neurocognitive evidence. Current Addictions Report. Advance online publication. doi:10.1007/s40429-015-0073-8Google Scholar
Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis, S. (2004). The role of the medial frontal cortex in cognitive control. Science, 306, 443447.Google Scholar
Robins, L., Helzer, J., Croughan, J., & Ratcliff, K. S. (1980). The NIMH Diagnostic Interview Schedule: Its history, characteristics and validity. St. Louis, MO: Washington University School of Medicine.Google Scholar
Rogosch, F. A., Oshri, A., & Cicchetti, D. (2010). From child maltreatment to adolescent cannabis abuse and dependence: A developmental cascade model. Development and Psychopathology, 22, 883897. doi:10.1017/S0954579410000520Google Scholar
Schibli, K., Wong, K., Hedayati, N., & D'Angiulli, A. (2017). Attending, learning, and socioeconomic disadvantage: Developmental cognitive and social neuroscience of resilience and vulnerability. Annals of the New York Academy of Sciences, 1396, 1938. doi:10.1111/nyas.13369Google Scholar
Shaffer, D., Fisher, P., Lucas, C. P., Dulcan, M. K., & Schwab-Stone, M. E. (2000). NIMH Diagnostic Interview Schedule for Children Version IV (NIMH DISC-IV): Description, differences from previous versions, and reliability of some common diagnoses. Journal of the American Academy of Child & Adolescent Psychiatry, 39, 2838. doi:10.1097/00004583-200001000-00014Google Scholar
Sher, K. J., & Trull, T. J. (1994). Personality and disinhibitory psychopathology: Alcoholism and antisocial personality disorder. Journal of Abnormal Psychology, 103, 92102.Google Scholar
Sherin, J. E., & Nemeroff, C. B. (2011). Post-traumatic stress disorder: The neurobiological impact of psychological trauma. Dialogues in Clinical Neuroscience, 13, 263278.Google Scholar
Shonkoff, J. P., Garner, A. S., Committee on Psychosocial Aspects of Child and Family Health, Committee on Early Childhood, Adoption, and Dependent Care, and Section on Developmental and Behavioral Pediatrics, Siegel, B. S., Dobbins, M. I., Earls, M. F., … Wood, D. L. (2012). The lifelong effects of early childhood adversity and toxic stress. Pediatrics, 129, e232. doi:10.1542/peds.2011-2663Google Scholar
Stadler, C., Sterzer, P., Schmeck, K., Krebs, A., Kleinschmidt, A., & Poustka, F. (2007). Reduced anterior cingulate activation in aggressive children and adolescents during affective stimulation: Association with temperament traits. Journal of Psychiatric Research, 41, 410417.Google Scholar
Stevens, J. S., Ely, T. D., Sawamura, T., Guzman, D., Bradley, B., Ressler, K. J., & Jovanovic, T. (2016). Childhood maltreatment predicts reduced inhibition-related activity in the rostral anterior cingulate in PTSD, but not trauma-exposed controls. Depression and Anxiety, 33, 614622.Google Scholar
Stevens, M. C., Kiehl, K. A., Pearlson, G. D., & Calhoun, V. D. (2009). Brain network dynamics during error commission. Human Brain Mapping, 30, 2437.Google Scholar
Stouthamer-Loeber, M., Loeber, R., Homisch, D. L., & Wei, E. (2001). Maltreatment of boys and the development of disruptive and delinquent behavior. Development and Psychopathology, 13, 941955.Google Scholar
Straus, M. A. (1979). Measuring intrafamily conflict and violence: The conflict tactics (CT) scales. Journal of Marriage and the Family, 41, 7588.Google Scholar
Straus, M. A., Gelles, R. J., & Steinmetz, S. K. (1980). Behind closed doors: Violence in the American family. New York: Anchor/Doubleday.Google Scholar
Taylor, S. F., Stern, E. R., & Gehring, W. J. (2007). Neural systems for error monitoring recent findings and theoretical perspectives. Neuroscientist, 13, 160172.Google Scholar
Teicher, M. H., Anderson, C. M., Ohashi, K., & Polcari, A. (2014). Childhood maltreatment: Altered network centrality of cingulate, precuneus, temporal pole and insula. Biological Psychiatry, 76, 297305.Google Scholar
Teicher, M. H., Samson, J. A., Anderson, C. M., & Ohashi, K. (2016). The effects of childhood maltreatment on brain structure, function and connectivity. Nature, 17, 652666. doi:10.1038/nrn.2016.111Google Scholar
Thomaes, K., Dorrepaal, E., Draijer, N., De Ruiter, M. B., van Balkom, A. J., Smit, J. H., & Veltman, D. J. (2010). Reduced anterior cingulate and orbitofrontal volumes in child abuse-related complex PTSD. Journal of Clinical Psychiatry, 71, 16361644.Google Scholar
Trickett, P. K., Negriff, S., Ji, J., & Peckins, M. (2011). Child maltreatment and adolescent development. Journal of Research on Adolescence, 21, 320.Google Scholar
Trucco, E. M., Hicks, B. M., Villafuerte, S., Nigg, J. T., Burmeister, M., & Zucker, R. A. (2016). Temperament and externalizing behavior as mediators of genetic risk on adolescent substance use. Journal of Abnormal Psychology, 125, 565575. doi.org/10.1037/abn0000143Google Scholar
Trucco, E. M., Villafuerte, S., Heitzeg, M. M., Burmeister, M., & Zucker, R. A. (2014). Rule breaking mediates the developmental association between GABRA2 and adolescent substance abuse. Journal of Child Psychology and Psychiatry, 55, 13721379. doi:10.1111/jcpp.12244Google Scholar
van der Kolk, B. A. (2014). The body keeps score: Brain, mind, and body in the healing of trauma. London: Penguin Books.Google Scholar
van der Kolk, B. A., Hodgon, H., Gapen, M., Musicaro, R., Suvak, M. K., Hamlin, E., & Spinazzola, J. (2016). A randomized controlled study of neurofeedback for chronic PTSD. PLOS ONE, 11, e0166752. doi:10.1371/journal.pone.0166752Google Scholar
van Veen, V., & Carter, C. S. (2002). The anterior cingulate as a conflict monitor: fMRI and ERP studies. Physiology & Behavior, 77, 477482. doi:10.1016/S0031-9384(02)00930-7Google Scholar
Villodas, M. T., Litrownik, A. J., Newton, R. R., & Davis, I. P. (2015). Long-term placement trajectories of children who were maltreated and entered the child welfare system at an early age: Consequences for physical and behavioral well-being. Journal of Pediatric Psychology, 41, 4654. doi.org/10.1093/jpepsy/jsv031Google Scholar
Whitaker, R. C., Dearth-Wesley, T., Gooze, R. A., Becker, B. D., Gallagher, K. C., & McEwen, B. S. (2014). Adverse childhood experiences, dispositional mindfulness, and adult health. Preventive Medicine, 67, 147153.Google Scholar
Yang, Y., & Raine, A. (2009). Prefrontal structural and functional brain imaging findings in antisocial, violent, and psychopathic individuals: A meta-analysis. Psychiatry Research: Neuroimaging, 174, 8188.Google Scholar
Zucker, R. A., Ellis, D. A., Fitzgerald, H. E., Bingham, C. R., & Sanford, K. (1996). Other evidence for at least two alcoholisms: II. Life course variation in antisociality and heterogeneity of alcoholic outcome. Development and Psychopathology, 8, 831848. doi:10.1017/S0954579400007458Google Scholar
Zucker, R. A., Fitzgerald, H. E., & Noll, R. B. (1990). Drinking and Drug History. Unpublished questionnaire, Michigan State University.Google Scholar
Zucker, R. A., Fitzgerald, H. E., Refior, S. K., Puttler, L. I., Pallas, D. M., & Ellis, D. A. (2000). The clinical and social ecology of childhood for children of alcoholics: Description of a study and implications for a differentiated social policy. In Fitzgerald, H. E., Lester, B. M., & Zuckerman, B. S. (Eds.), Children of addiction: Research, health, and public policy issues (pp. 109141). New York: Routledge.Google Scholar
Zucker, R. A., Heitzeg, M. M., & Nigg, J. T. (2011). Parsing the undercontrol-disinhibition pathway to substance use disorders: A multilevel developmental problem. Child Development Perspectives, 5, 248255. doi:10.1111/j.1750-8606.2011.00172.xGoogle Scholar