We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
This journal utilises an Online Peer Review Service (OPRS) for submissions. By clicking "Continue" you will be taken to our partner site
https://mc.manuscriptcentral.com/designscience.
Please be aware that your Cambridge account is not valid for this OPRS and registration is required. We strongly advise you to read all "Author instructions" in the "Journal information" area prior to submitting.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Social impact has been widely discussed by the engineering community, but studies show that there is currently little systematic consideration of the social impact of products in both academia and in industry beyond social impacts on health and safety. While Failure Mode and Effect Analysis (FMEA) is useful for evaluating health and safety risks, new developments are needed to create an FMEA-style evaluation that can be applied to a wide range of social impacts for engineered products. The authors describe necessary modifications to traditional FMEA that transform it into a tool for social impact analysis. The modification of FMEA involves the introduction of positive and negative impacts, the inclusion of discrete and continuous impacts, the consideration of various stakeholder types, and the inclusion of uncertainty in place of detectability. This modified FMEA is referred to in this paper as Social Impact Effects Analysis (SIEA). The paper describes how SIEA is performed and articulates the potential benefits of SIEA.
Society’s most well-intended efforts to solve sustainability challenges have not yet achieved the expected gains due to rebound effects (i.e., negative consequences of interventions arising from induced changes in system behaviour). Rebound effects offset about 40% of potential sustainability gains, but the understanding of design as a key leverage point for preventing rebound effects is still untapped. In this position paper, three fundamental scientific gaps hampering the prevention of rebound effects are discussed: (1) limited knowledge about the rebound effects triggered by efficiency–effectiveness–sufficiency strategies; (2) the influence of the counterintuitive behaviour of complex socio-technical systems in giving rise to rebound effects is not yet understood and (3) the bounded rationality within design limits the understanding of rebound effects at a broader systemic level. To address the aforementioned gaps, novel methodologies, simulation models and strategies to enable the design of reboundless interventions (i.e., products, product/service-systems and socio-technical systems that are resilient to rebound effects) are required. Building on the strong foundation of systems and design theory, this position paper argues for the need to bridge the interdisciplinary gap in the interplay of design and rebound effects, qualitative and quantitative models, engineering and social sciences, and theory and practice.
By making building instructions freely accessible to everyone, open-source machine tools (OSMTs) promise to democratize manufacturing by enabling users in marginalized settings to build machines tools by themselves. There is, however, a lack of empirical evidence of the replicability of OSMT designs in low-resource contexts. This article explores OSMT replicability through qualitative and empirical methods to answer the central research question: Are designs that are fully open source also globally replicable? A comparative experiment was carried out by replicating an open-source 3D printer in two different locations: in Germany (resource-rich) and in Oman (resource-poor). The experiment aimed to determine the barriers faced with the replication in each location. It was significantly more challenging to replicate the 3D printer in Oman, primarily due to difficulties in sourcing and manufacturing, necessitating extensive modifications, which demanded greater skills and dexterity from users compared to those in Germany. Qualitative interviews found that limited digital literacy posed a significant barrier for microenterprise owners in replicating OSMT. Finally, design guidelines were proposed to enhance the global replicability of contextualized OSMT designs.
Under the umbrella concepts of upscaling and emerging technology, a wide variety of phenomena related to technology development and deployment in society are examined to meet societal imperatives (e.g., environment, safety, social justice). The design literature does not provide an explicit common theoretical and practical framework to clarify the assessment method to handle “an” upscaling. In this nebulous context, designers are struggling to identify the characteristics to anticipate the consequences of emerging technology upscaling. This article therefore first proposes a structuring framework to analyze the literature in a wide range of industrial sectors (energy, chemistry, building, etc.). This characterization brought to light five prevalent archetypes clarifying the concepts of upscaling and emerging technology. Then, a synthesis of invariants and methodological requirements for designers is proposed to deal with upscaling assessment according to each archetype, based on a literature review of existing design methods. This literature review process showed a disparity in treatment for some archetypes, regarding the industrial sector. A discussion is consequently proposed in the conclusion to guide design practices.
Sustainability evaluations are increasingly relevant in the design of products. Within sustainability-related frameworks, circular economy (CE) has gained attention in the last few years, and this has vastly affected design, leading, for example, to design for circularity. This article deals with the wide range of product-level CE assessment tools, out of which some are applied to a case study from the building sector, namely a tiny house made with hemp bricks. Attention was specifically paid to those methods through which a single circularity indicator could be extrapolated. Overall, the objective of this work is to study the convergence of existing CE assessment methods in providing consistent circularity performances. The results show similarities in the overall circularity scores despite differences in the variables used to achieve that final score. Thus, despite the lack of standard methods, the results suggest that many of these tools are sufficiently interchangeable, also in consideration of consistent indications to improve the circularity of the tiny house. This means that consistent inputs are provided to anyone willing to redesign the tiny house with the objective of making it more circular irrespective of the assessment tool used.
A radical shift in technology is necessary to enable future air transport solutions. Sustainability targets for aeroengine manufacturing mean more than reducing CO2 and NOX. The future will open up possibilities and bring new challenges when introducing hybrid- and electrical propulsion technologies using new materials, technology solutions and new business models. This article reports on findings from a longitudinal study and many years of collaboration between researchers and industry experts, where a first-tier aeroengine manufacturer transforms their product development capabilities to enable sustainable product development. The article highlights some activities undertaken and identifies critical challenges and opportunities remaining for a manufacturer of next-generation aeroengine solutions. It is argued that the challenge for aeroengine manufacturers to develop new-generation propulsive technologies will require a systemic change in the undertaking of design and development. The opportunities of sustainable technologies are evident yet require: (1) means to tighter integrate business and technology development, (2) the ability to quantify and assess sustainability impacts of different concept solutions, and (3) means to utilise natural resources, alloys and materials for a circular and life-cycle optimised solution.
Injera is Ethiopian ethnic traditional staple food, made from teff and other crops. The country’s superfoods are highly regarded in many Western countries for their excellent nutritional properties (‘very low gluten’), and mineral composition. Injera provides sufficient conditions for fungi to grow and ruin injera by changing the texture and making it inedible. This study aimed to develop an evaporative cooler clay chamber (ECCC) used to extend the shelf life of injera by controlling temperature and relative humidity (RH). This system is an economical and efficient way to lower the temperature and increase RH. The results show the maximum daily ambient temperature reduced from 28.98 °C to 22.90 °C and increased the RH of the storage chamber from 28.78% to 80.94%, respectively. The temperature drops up to 6.08 °C, and the RH rises to 52.16% observed. Additionally, the effects of temperature, RH and potential of hydrogen were studied for identified rotten injera and designed for injera storage. ECCC can store freshly made injera for 9 days before any visible mould stains appear, significantly reducing weight loss with an average cooling efficiency of 79.31%. Therefore, this study might help to develop low-cost cold storage for injera preservation at farms end in Ethiopia.
Sustainability encompasses social, economic and environmental issues with the primary aim to fulfil the needs of the present society without compromising the potential needs of future generations. Product design has been identified to greatly influence the sustainability of New Product Development. This study aims to identify and review the fundamental factors in which product design has the ability to influence and improve the overall environmental sustainability of a product. A comprehensive literature review has been performed to establish trends over the past four decades. The factors that have significant potential, such as the 6Rs, waste and energy, which aid designers in the implementation of environmental sustainability during the product design process have been identified and discussed. Through this analysis, a new conceptual framework has been conceived, facilitating designers in implementing environmental sustainability during product development. In addition, future research opportunities have been identified.
Over the past decade, the field of design for sustainable behaviour (DfSB) has gained a growing amount of research interest. However, as the field evolves, new challenges also arise. A suitable unit of analysis is needed to contextualize users’ behaviour issues in a broader socio-cultural and long-term perspective. This paper explores the use of activity theory (AT) as a potential lens for guiding empirical analysis and design exploration in DfSB. By employing a meta-synthesis approach, we systematically search and synthesize existing studies that adopted AT in design for sustainability. Key findings show that AT’s principles and theoretical implications are especially useful for helping design researchers frame and address DfSB challenges. We argue that by taking activity as the unit of analysis, the AT lens can enable researchers to incorporate users’ dynamic, multi-level and complex activity systems into DfSB considerations.
The impact of engineered products is a topic of concern in society. Product impact may fall under the categories of economic, environmental or social impact, with the last category defined as the effect of a product on the day-to-day life of people. Design teams lack sufficient tools to estimate the social impact of products, and the combined impacts of economic, environmental and social impacts for the products they are designing. This paper aims to provide a framework for the estimation of product impact during product design. To estimate product impact, models of both the product and society are required. This framework integrates models of the product, scenario, society and impact into an agent-based model to estimate product impact. Although this paper demonstrates the framework using only social impact, the framework can also be applied to economic or environmental impacts individually or all three concurrently. Agent-based modelling has been used previously for product adoption models, but it has not been extended to estimate product impact. Having tools for impact estimation allows for optimising the product design parameters to increase the potential positive impact and reduce potential negative impact.
This paper builds on the lead author’s keynote address to the Design Society’s 22nd International Conference on Engineering Design in 2019, and in doing so provides a personal perspective on the development of the field of design for sustainability. It begins by describing some of the history of the research from the late 1980s until the present day. This is followed by an analysis of the way in which design for sustainability has been reflected within the International Conference on Engineering Design over the last 30 years, highlighting the way in which the focus has shifted over this time from a focus on recycling and end of life to today where sustainability is playing a leading role in the research. The analysis compares the evolution of the subject with the wider policy and practice perspectives linked to global recognition of the need to move towards Sustainable Development. Finally, the paper reflects on the lessons to be learned from this work and their implications for design research illustrating that engineering design has an opportunity to take more leadership within design for sustainability research and use this to enable change within industry.