Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T23:00:08.622Z Has data issue: false hasContentIssue false

Sur la répartition des valeurs de la fonction d‘Euler

Published online by Cambridge University Press:  04 December 2007

MICHEL BALAZARD
Affiliation:
Cnrs Umr 9936, Algorithmique arthmétique, Université Bordeaux 1, 351, cours de la Libération, 33405 Talence, France
GÉRALD TENENBAUM
Affiliation:
Institut Élie Cartan, Université de Nancy 1, BP 239, 54506 Vandœuvre Cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let Φ(x) denote the number of those integers n with φ(n)[les ] x, where φ denotes the Euler function. Improving on a well-known estimate of Bateman (1972), we show that Φ(x)-Ax [Lt] R(x), where A=ζ(2)ζ(3)/ζ(6) and R(x) is essentially of the size of the best available estimate for the remainder term in the prime number theorem.

Type
Research Article
Copyright
© 1998 Kluwer Academic Publishers