Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T09:12:26.020Z Has data issue: false hasContentIssue false

Sub-Weyl subconvexity for Dirichlet $L$-functions to prime power moduli

Published online by Cambridge University Press:  03 November 2015

Djordje Milićević*
Affiliation:
Bryn Mawr College, Department of Mathematics, 101 North Merion Avenue, Bryn Mawr, PA 19010, USA email dmilicevic@brynmawr.edu

Abstract

We prove a subconvexity bound for the central value $L(\frac{1}{2},{\it\chi})$ of a Dirichlet $L$-function of a character ${\it\chi}$ to a prime power modulus $q=p^{n}$ of the form $L(\frac{1}{2},{\it\chi})\ll p^{r}q^{{\it\theta}+{\it\epsilon}}$ with a fixed $r$ and ${\it\theta}\approx 0.1645<\frac{1}{6}$, breaking the long-standing Weyl exponent barrier. In fact, we develop a general new theory of estimation of short exponential sums involving $p$-adically analytic phases, which can be naturally seen as a $p$-adic analogue of the method of exponent pairs. This new method is presented in a ready-to-use form and applies to a wide class of well-behaved phases including many that arise from a stationary phase analysis of hyper-Kloosterman and other complete exponential sums.

Type
Research Article
Copyright
© The Author 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barban, M. B., Linnik, Yu. V. and Tshudakov, N. G., On prime numbers in an arithmetic progression with a prime-power difference, Acta Arith. 9 (1964), 375390; MR 0171766 (30 #1993).Google Scholar
Berndt, B. C., Evans, R. J. and Williams, K. S., Gauss and Jacobi sums, Canadian Mathematical Society Series of Monographs and Advanced Texts (Wiley, New York, 1998); MR 1625181 (99d:11092).Google Scholar
Blomer, V. and Milićević, D., p-adic analytic twists and strong subconvexity, Ann. Sci. Éc. Norm. Supér. (4) 48 (2015), 561605; MR 3377053.Google Scholar
Blomer, V. and Milićević, D., The second moment of twisted modular L-functions, Geom. Funct. Anal. 25 (2015), 453516; doi: 10.1007/s00039-015-0318-7; MR 3334233.Google Scholar
Bourgain, J., Decoupling, exponential sums and the Riemann zeta function, Preprint (2014),arXiv:1408.5794.Google Scholar
Burgess, D. A., On character sums and L-series. II, Proc. Lond. Math. Soc. (3) 13 (1963), 524536; MR 0148626 (26 #6133).CrossRefGoogle Scholar
Conrey, J. B. and Iwaniec, H., The cubic moment of central values of automorphic L-functions, Ann. of Math. (2) 151 (2000), 11751216; MR 1779567 (2001g:11070).Google Scholar
Fujii, A., Gallagher, P. X. and Montgomery, H. L., Some hybrid bounds for character sums and Dirichlet L-series, in Topics in number theory (Proc. Colloq., Debrecen, 1974), Colloq. Math. Soc. János Bolyai, vol. 13 (North-Holland, Amsterdam, 1976), 4157; MR 0434987 (55 #7949).Google Scholar
Gallagher, P. X., Primes in progressions to prime-power modulus, Invent. Math. 16 (1972), 191201; MR 0304327 (46 #3462).CrossRefGoogle Scholar
Graham, S. W. and Kolesnik, G., Van der Corput’s method of exponential sums, London Mathematical Society Lecture Note Series, vol. 126 (Cambridge University Press, Cambridge, 1991); MR 1145488 (92k:11082).Google Scholar
Heath-Brown, D. R., Hybrid bounds for Dirichlet L-functions, Invent. Math. 47 (1978), 149170; MR 0485727 (58 #5549).Google Scholar
Hiary, G. A., Computing Dirichlet character sums to a power-full modulus, J. Number Theory 140 (2014), 122146; MR 3181649.Google Scholar
Holowinsky, R., Munshi, R. and Qi, Z., Character sums of composite moduli and hybrid subconvexity, Contemp. Math., to appear. Preprint (2014), arXiv:1409.3797.Google Scholar
Huxley, M. N., Exponential sums and the Riemann zeta function. V, Proc. Lond. Math. Soc. (3) 90 (2005), 141; MR 2107036 (2005h:11180).Google Scholar
Iwaniec, H., On zeros of Dirichlet’s L series, Invent. Math. 23 (1974), 97104; MR 0344207 (49 #8947).Google Scholar
Iwaniec, H. and Kowalski, E., Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53 (American Mathematical Society, Providence, RI, 2004); MR 2061214 (2005h:11005).Google Scholar
Iwaniec, H. and Sarnak, P., Perspectives on the analytic theory of L-functions, Geom. Funct. Anal. (2000), Special Volume, Part II, 705–741, GAFA 2000 (Tel Aviv, 1999); MR 1826269 (2002b:11117).Google Scholar
Katok, S., p-adic analysis compared with real, Student Mathematical Library, vol. 37 (American Mathematical Society, Providence, RI, 2007); MR 2298943 (2008j:12010).Google Scholar
Michel, P., Analytic number theory and families of automorphic L-functions, in Automorphic forms and applications, IAS/Park City Mathematics Series, vol. 12 (American Mathematical Society, Providence, RI, 2007), 181295; MR 2331346 (2008m:11104).Google Scholar
Michel, P. and Venkatesh, A., The subconvexity problem for GL2, Publ. Math. Inst. Hautes Études Sci. 111 (2010), 171271; MR 2653249.Google Scholar
Nelson, P. D., Pitale, A. and Saha, A., Bounds for Rankin–Selberg integrals and quantum unique ergodicity for powerful levels, J. Amer. Math. Soc. 27 (2014), 147191; MR 3110797.CrossRefGoogle Scholar
Phillips, E., The zeta-function of Riemann; further developments of van der Corput’s method, Q. J. Math. 4 (1933), 209225.Google Scholar
Postnikov, A. G., On the sum of characters with respect to a modulus equal to a power of a prime number, Izv. Akad. Nauk SSSR. Ser. Mat. 19 (1955), 1116; MR 0068575 (16,905f).Google Scholar
Rankin, R. A., Van der Corput’s method and the theory of exponent pairs, Q. J. Math. 6 (1955), 147153; MR 0072170 (17,240a).Google Scholar
Ricotta, G., Universality of convexity breaking exponents, in Problem Sessions: Subconvexity Bounds for $L$-functions (notes), 2006,http://www.aimath.org/WWN/subconvexity/subconvexity.pdf.Google Scholar
Robert, A. M., A course in p-adic analysis, Graduate Texts in Mathematics, vol. 198 (Springer, New York, 2000); MR 1760253 (2001g:11182).Google Scholar
Salié, H., Über die Kloostermanschen Summen S (u, v; q), Math. Z. 34 (1932), 91109; MR 1545243.CrossRefGoogle Scholar
Templier, N., Large values of modular forms, Camb. J. Math. 2 (2014), 91116; MR 3272013.Google Scholar
Titchmarsh, E. C., The theory of the Riemann zeta-function, 2nd edition (The Clarendon Press, Oxford University Press, New York, 1986), Edited and with a preface by D. R. Heath-Brown; MR 882550 (88c:11049).Google Scholar
van der Corput, J. G., Verschärfung der Abschätzung beim Teilerproblem, Math. Ann. 87 (1922), 3965.Google Scholar
Vishe, P., A fast algorithm to compute L (1∕2, f ×𝜒q), J. Number Theory 133 (2013), 15021524; MR 3007119.Google Scholar
Walfisz, A., Zur Abschätzung von 𝜁(1∕2 + it), Nachr. Ges. Wiss. Göttingen Math.-Physik. Kl. 1924 (1924), 155158 (in German).Google Scholar