Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T21:09:31.354Z Has data issue: false hasContentIssue false

Smoothable del Pezzo surfaces with quotient singularities

Published online by Cambridge University Press:  15 December 2009

Paul Hacking
Affiliation:
Department of Mathematics and Statistics, Lederle Graduate Research Tower, Box 34515, University of Massachusetts Amherst, Amherst, MA 01003, USA (email: hacking@math.umass.edu)
Yuri Prokhorov
Affiliation:
Department of Higher Algebra, Faculty of Mathematics and Mechanics, Moscow State Lomonosov University, Vorobievy Gory, Moscow 119 899, Russia (email: prokhoro@mech.math.msu.su)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We classify del Pezzo surfaces with quotient singularities and Picard rank one which admit a ℚ-Gorenstein smoothing. These surfaces arise as singular fibres of del Pezzo fibrations in the 3-fold minimal model program and also in moduli problems.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2009

References

[1]Alexeev, V., General elephants of ℚ-Fano 3-folds, Compositio Math. 91 (1994), 91116.Google Scholar
[2]Alexeev, V. and Nikulin, V., Del Pezzo and K3 surfaces, MSJ Mem. 15 (2006), Preprint (2004), arXiv:math/0406536v6 [math.AG].Google Scholar
[3]Blache, R., Riemann–Roch theorem for normal surfaces and applications, Abh. Math. Sem. Univ. Hamburg 65 (1995), 307340.CrossRefGoogle Scholar
[4]Demazure, M., Surfaces de del Pezzo II–V, in Séminaire sur les Singularités des Surfaces, Lecture Notes in Mathematics, vol. 777 (Springer, Berlin, 1980), 2369.CrossRefGoogle Scholar
[5]Fulton, W., Introduction to toric varieties, Annals of Mathematics Studies, vol. 131 (Princeton University Press, Princeton, NJ, 1993).CrossRefGoogle Scholar
[6]Greuel, G.-M. and Steenbrink, J., On the topology of smoothable singularities, in Singularities (Arcata, CA, 1981), Proceedings of Symposia in Pure Mathematics, vol. 40 (American Mathematical Society, Providence, RI, 1983), 535545 (Part 1).Google Scholar
[7]Greb, D., Kebekus, S. and Kovács, S., Extension theorems for differential forms and BogomolovSommese vanishing on log canonical varieties, Preprint (2008), arXiv:0808.3647v2 [math.AG].CrossRefGoogle Scholar
[8]Hacking, P., Compact moduli of plane curves, Duke Math. J. 124 (2004), 213257.CrossRefGoogle Scholar
[9]Illusie, L., Complexe cotangent et déformations I, Lecture Notes in Mathematics, vol. 239 (Springer, Berlin, 1971).CrossRefGoogle Scholar
[10]Karpov, B. and Nogin, D., Three-block exceptional sets on del Pezzo surfaces (in Russian), Izv. Ross. Akad. Nauk Ser. Mat. 62 (1998), 338. Translation in Izv. Math. 62 (1998), 429–463.Google Scholar
[11]Keel, S. and McKernan, J., Rational curves on quasi-projective surfaces, Mem. Amer. Math. Soc. 140 (1999).Google Scholar
[12]Kollár, J., Flips, flops, minimal models, etc, in Surveys in differential geometry (Cambridge, MA, 1990) (Lehigh University, Bethlehem, PA, 1991), 113199.Google Scholar
[13]Kollár, J., Is there a topological Bogomolov–Miyaoka–Yau inequality?, Pure Appl. Math. Q. 4 (2008), 203236.CrossRefGoogle Scholar
[14]Kollár, J.et al., Flips and abundance for algebraic threefolds, Astérisque 211 (1992).Google Scholar
[15]Kollár, J. and Mori, S., Birational geometry of algebraic varieties (Cambridge University Press, Cambridge, 1998).CrossRefGoogle Scholar
[16]Kollár, J. and Shepherd-Barron, N., Threefolds and deformations of surface singularities, Invent. Math. 91 (1988), 299338.CrossRefGoogle Scholar
[17]Looijenga, E., Riemann–Roch and smoothings of singularities, Topology 25 (1985), 292302.Google Scholar
[18]Looijenga, E. and Wahl, J., Quadratic functions and smoothing surface singularities, Topology 25 (1986), 261291.CrossRefGoogle Scholar
[19]Manetti, M., Normal degenerations of the complex plane, J. Reine Angew. Math. 419 (1991), 89118.Google Scholar
[20]Manetti, M., Normal projective surfaces with ρ=1, P −1≥5, Rend. Sem. Mat. Univ. Padova 89 (1993), 195205.Google Scholar
[21]Manin, Y., Cubic forms—algebra, geometry, arithmetic (North-Holland, Amsterdam, 1986).Google Scholar
[22]Prokhorov, Y., Lectures on complements on log surfaces, MSJ Mem. 10 (2001), Preprint (1999), arXiv:math/9912111v2 [math.AG].Google Scholar
[23]Wahl, J., Smoothings of normal surface singularities, Topology 20 (1981), 219246.CrossRefGoogle Scholar