Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T21:49:04.975Z Has data issue: false hasContentIssue false

Serre weights for quaternion algebras

Published online by Cambridge University Press:  09 February 2011

Toby Gee
Affiliation:
Department of Mathematics, Harvard University, 1 Oxford Street, Cambridge, MA 02138, USA (email: tgee@math.harvard.edu)
David Savitt
Affiliation:
Department of Mathematics, University of Arizona, 617 N. Santa Rita Avenue, Tucson, AZ 85712, USA (email: savitt@math.arizona.edu)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the possible weights of an irreducible two-dimensional mod p representation of which is modular in the sense that it comes from an automorphic form on a definite quaternion algebra with centre F which is ramified at all places dividing p, where F is a totally real field. In most cases we determine the precise list of possible weights; in the remaining cases we determine the possible weights up to a short and explicit list of exceptions.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2011

References

[AS86]Ash, A. and Stevens, G., Cohomology of arithmetic groups and congruences between systems of Hecke eigenvalues, J. Reine Angew. Math. 365 (1986), 192220.Google Scholar
[Bre97]Breuil, C., Représentations p-adiques semi-stables et transversalité de Griffiths, Math. Ann. 307 (1997), 191224.CrossRefGoogle Scholar
[Bre00]Breuil, C., Groupes p-divisibles, groupes finis et modules filtrés, Ann. of Math. (2) 152 (2000), 489549.CrossRefGoogle Scholar
[BCDT01]Breuil, C., Conrad, B., Diamond, F. and Taylor, R., On the modularity of elliptic curves over Q: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), 843939 (electronic).Google Scholar
[BM02]Breuil, C. and Mézard, A., Multiplicités modulaires et représentations de GL2(Zp) et de en l=p, Duke Math. J. 115 (2002), 205310, with an appendix by Guy Henniart.Google Scholar
[BDJ10]Buzzard, K., Diamond, F. and Jarvis, F., On Serre’s conjecture for mod l Galois representations over totally real fields, Duke Math. J. 55 (2010), 105161.Google Scholar
[CDT99]Conrad, B., Diamond, F. and Taylor, R., Modularity of certain potentially Barsotti–Tate Galois representations, J. Amer. Math. Soc. 12 (1999), 521567.Google Scholar
[DT94]Diamond, F. and Taylor, R., Lifting modular mod l representations, Duke Math. J. 74 (1994), 253269.CrossRefGoogle Scholar
[Gee06]Gee, T., On the weights of mod p Hilbert modular forms, Preprint (2006), Invent. Math., to appear.Google Scholar
[Gee]Gee, T., Automorphic lifts of prescribed types, Math. Ann., to appear.Google Scholar
[GS]Gee, T. and Savitt, D., Serre weights for mod p Hilbert modular forms: the totally ramified case, J. Reine Angew. Math., to appear.Google Scholar
[JL70]Jacquet, H. and Langlands, R. P., Automorphic forms on GL(2), Lecture Notes in Mathematics, vol. 114 (Springer, Berlin, 1970).Google Scholar
[Kha01]Khare, C., A local analysis of congruences in the (p,p) case. II, Invent. Math. 143 (2001), 129155.Google Scholar
[Kis08]Kisin, M., Potentially semi-stable deformation rings, J. Amer. Math. Soc. 21 (2008), 513546.Google Scholar
[Kis09a]Kisin, M., Modularity of 2-adic Barsotti–Tate representations, Invent. Math. 178 (2009), 587634.Google Scholar
[Kis09b]Kisin, M., Moduli of finite flat group schemes, and modularity, Ann. of Math. (2) 170 (2009), 10851180.Google Scholar
[Mat89]Matsumura, H., Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, second edition (Cambridge University Press, Cambridge, 1989), translated from the Japanese by M. Reid.Google Scholar
[Pra90]Prasad, D., Trilinear forms for representations of GL(2) and local ϵ-factors, Compositio Math. 75 (1990), 146.Google Scholar
[Sav04]Savitt, D., Modularity of some potentially Barsotti–Tate Galois representations, Compositio Math. 140 (2004), 3163.Google Scholar
[Sav05]Savitt, D., On a conjecture of Conrad, Diamond, and Taylor, Duke Math. J. 128 (2005), 141197.CrossRefGoogle Scholar
[Sav08]Savitt, D., Breuil modules for Raynaud schemes, J. Number Theory 128 (2008), 29392950.Google Scholar
[Sch08]Schein, M., Weights in Serre’s conjecture for Hilbert modular forms: the ramified case, Israel J. Math. 166 (2008), 369391.CrossRefGoogle Scholar
[Ser87]Serre, J-P., Sur les représentations modulaires de degré 2 de , Duke Math. J. 54 (1987), 179230.Google Scholar
[Ser96]Serre, J-P., Two letters on quaternions and modular forms (mod p), Israel J. Math. 95 (1996), 281299, with introduction, appendix and references by R. Livné.Google Scholar