Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T21:31:02.620Z Has data issue: false hasContentIssue false

Rational points on Erdős–Selfridge superelliptic curves

Published online by Cambridge University Press:  14 July 2016

Michael A. Bennett
Affiliation:
Department of Mathematics, University of British Columbia, Vancouver, BC, Canada V6T 1Z2 email bennett@math.ubc.ca
Samir Siksek
Affiliation:
Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK email S.Siksek@warwick.ac.uk

Abstract

Given $k\geqslant 2$ , we show that there are at most finitely many rational numbers $x$ and $y\neq 0$ and integers $\ell \geqslant 2$ (with $(k,\ell )\neq (2,2)$ ) for which

$$\begin{eqnarray}x(x+1)\cdots (x+k-1)=y^{\ell }.\end{eqnarray}$$
In particular, if we assume that $\ell$ is prime, then all such triples $(x,y,\ell )$ satisfy either $y=0$ or $\ell <\exp (3^{k})$ .

Type
Research Article
Copyright
© The Authors 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bennett, M. A., Bruin, N. B., Győry, K. and Hajdu, L., Powers from products of consecutive terms in arithmetic progression , Proc. Lond. Math. Soc. (3) 92 (2006), 273306.Google Scholar
Bennett, M. A. and Dahmen, S., Klein forms and the generalized superelliptic equation , Ann. of Math. (2) 177 (2013), 171239.Google Scholar
Breuil, C., Conrad, B., Diamond, F. and Taylor, R., On the modularity of elliptic curves over ℚ: wild 3-adic exercises , J. Amer. Math. Soc. 14 (2001), 843939.Google Scholar
Darmon, H. and Merel, L., Winding quotients and some variants of Fermat’s last theorem , J. Reine Angew. Math. 490 (1997), 81100.Google Scholar
Erdős, P. and Selfridge, J. L., The product of consecutive integers is never a power , Illinois J. Math. 19 (1975), 292301.Google Scholar
Faltings, G., Endlichkeitssätze für abelsche Varietäten über Zahlkörpen , Invent. Math. 73 (1983), 349366.Google Scholar
Győry, K., Hajdu, L. and Pintér, Á., Perfect powers from products of consecutive terms in arithmetic progression , Compositio Math. 145 (2009), 845864.Google Scholar
Győry, K., Hajdu, L. and Saradha, N., On the diophantine equation n (n + d)⋯n + (k - 1d) = by l , Canad. Math. Bull. 47 (2004), 373388.CrossRefGoogle Scholar
Kraus, A., Majorations effectives pour l’équation de Fermat généralisée , Canad. J. Math. 49 (1997), 11391161.Google Scholar
Lakhal, M. and Sander, J. W., Rational points on the superelliptic Erdős–Selfridge curve of fifth degree , Mathematika 50 (2003), 113124.Google Scholar
Martin, G., Dimensions of the spaces of cuspforms and newforms on 𝛤0(N) and 𝛤1(N) , J. Number Theory 112 (2005), 298331.Google Scholar
Mazur, B., Rational isogenies of prime degree , Invent. Math. 44 (1978), 129162.Google Scholar
Ribet, K., On modular representations of Gal(/ℚ) arising from modular forms , Invent. Math. 100 (1990), 431476.Google Scholar
Sander, J. W., Rational points on a class of superelliptic curves , J. Lond. Math. Soc. (2) 59 (1999), 422434.Google Scholar
Schinzel, A. and Tijdeman, R., On the equation y m = P (x) , Acta Arith. XXXI (1976), 199204.Google Scholar
Schoenfeld, L., Sharper bounds for the Chebyshev functions 𝜃(x) and 𝜓(x) II , Math. Comp. 30 (1976), 337360.Google Scholar
Siksek, S., The modular approach to Diophantine equations , in Explicit Methods in Number Theory: Rational Points and Diophantine Equations, Panoramas et Syntheses, vol. 36, eds Belabas, K., Beukers, F., Gaudry, P., McCallum, W., Poonen, B., Siksek, S., Stoll, M. and Watkins, M. (Société Mathématique de France, Paris, 2012), 151179.Google Scholar