Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T21:28:42.160Z Has data issue: false hasContentIssue false

On two arithmetic theta lifts

Published online by Cambridge University Press:  07 September 2018

Stephan Ehlen
Affiliation:
Mathematisches Institut, University of Cologne, Weyertal 86-90, 50931 Cologne, Germany email stephan.ehlen@math.uni-koeln.de
Siddarth Sankaran
Affiliation:
Department of Mathematics, University of Manitoba, 420 Machray Hall, Winnipeg, Canada email siddarth.sankaran@umanitoba.ca

Abstract

Our aim is to clarify the relationship between Kudla’s and Bruinier’s Green functions attached to special cycles on Shimura varieties of orthogonal and unitary type, which play a key role in the arithmetic geometry of these cycles in the context of Kudla’s program. In particular, we show that the generating series obtained by taking the differences of the two families of Green functions is a non-holomorphic modular form and has trivial (cuspidal) holomorphic projection. Along the way, we construct a section of the Maaß lowering operator for moderate growth forms valued in the Weil representation using a regularized theta lift, which may be of independent interest, as it in particular has applications to mock modular forms. We also consider arithmetic-geometric applications to integral models of $U(n,1)$ Shimura varieties. Each family of Green functions gives rise to a formal arithmetic theta function, valued in an arithmetic Chow group, that is conjectured to be modular; our main result is the modularity of the difference of the two arithmetic theta functions. Finally, we relate the arithmetic heights of the special cycles to special derivatives of Eisenstein series, as predicted by Kudla’s conjecture, and describe a refinement of a theorem of Bruinier, Howard and Yang on arithmetic intersections against CM points.

Type
Research Article
Copyright
© The Authors 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. and Stegun, I. A., Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, vol. 55 (U.S. Government Printing Office, Washington, DC, 1964).Google Scholar
Andreatta, F., Goren, E. Z., Howard, B. and Madapusi Pera, K., Faltings heights of abelian varieties with complex multiplication , Ann. of Math. (2), to appear. Preprint (2015), arXiv:1508.00178.Google Scholar
Andreatta, F., Goren, E. Z., Howard, B. and Madapusi Pera, K., Height pairings on orthogonal Shimura varieties , Compos. Math. 153 (2017), 474534.Google Scholar
Berndt, R. and Kuehn, U., On Kudla’s Green function for signature $(2,2)$ , part I, Preprint (2012), arXiv:1205.6417.Google Scholar
Borcherds, R. E., Automorphic forms with singularities on Grassmannians , Invent. Math. 132 (1998), 491562.Google Scholar
Borcherds, R. E., The Gross–Kohnen–Zagier theorem in higher dimensions , Duke Math. J. 97 (1999), 219233.Google Scholar
Bruinier, J. H., Borcherds products on O (2, l) and Chern classes of Heegner divisors, Lecture Notes in Mathematics, vol. 1780 (Springer, Berlin, 2002).Google Scholar
Bruinier, J. H. and Funke, J., On two geometric theta lifts , Duke Math. J. 125 (2004), 4590.Google Scholar
Bruinier, J. H. and Funke, J., Traces of CM values of modular functions , J. Reine Angew. Math. 594 (2006), 133, doi:10.1515/CRELLE.2006.034.Google Scholar
Bruinier, J., Howard, B., Kudla, S. S., Rapoport, M. and Yang, T., Modularity of generating series of divisors on unitary Shimura varieties, Preprint (2017), arXiv:1702.07812.Google Scholar
Bruinier, J. H., Howard, B. and Yang, T., Heights of Kudla–Rapoport divisors and derivatives of L-functions , Invent. Math. 201 (2015), 195.Google Scholar
Bruinier, J. H. and Yang, T., Faltings heights of CM cycles and derivatives of L-functions , Invent. Math. 177 (2009), 631681, doi:10.1007/s00222-009-0192-8.Google Scholar
Burgos Gil, J. I., Kramer, J. and Kühn, U., Arithmetic characteristic classes of automorphic vector bundles , Doc. Math. 10 (2005), 619716.Google Scholar
Burgos Gil, J. I., Kramer, J. and Kühn, U., Cohomological arithmetic Chow rings , J. Inst. Math. Jussieu 6 (2007), 1172, doi:10.1017/S1474748007000011.Google Scholar
Dabholkar, A., Murthy, S. and Zagier, D., Quantum black holes, wall crossing, and mock modular forms, Preprint (2012), arXiv:1208.4074v2.Google Scholar
Duke, W., Imamoḡlu, Ö. and Tóth, Á., Cycle integrals of the j-function and mock modular forms , Ann. of Math. (2) 173 (2011), 947981.Google Scholar
Gelbart, S. S., Weil’s representation and the spectrum of the metaplectic group, Lecture Notes in Mathematics, vol. 530 (Springer, Berlin, 1976), 140.Google Scholar
Gillet, H. and Soulé, C., Arithmetic intersection theory , Publ. Math. Inst. Hautes Études Sci. 72 (1990), 93174, http://www.numdam.org/item?id=PMIHES_1990__72__93_0.Google Scholar
Gross, B. H. and Zagier, D. B., Heegner points and derivatives of L-series , Invent. Math. 84 (1986), 225320, doi:10.1007/BF01388809.Google Scholar
Harris, M., Kudla, S. S. and Sweet, W. J., Theta dichotomy for unitary groups , J. Amer. Math. Soc. 9 (1996), 9411004, doi:10.1090/S0894-0347-96-00198-1.Google Scholar
Howard, B., Complex multiplication cycles and Kudla–Rapoport divisors, II , Amer. J. Math. 137 (2015), 639698.Google Scholar
Howard, B. and Madapusi Pera, K., Arithmetic of Borcherds products, Preprint (2017), arXiv:1710.00347.Google Scholar
Ichino, A., A regularized Siegel–Weil formula for unitary groups , Math. Z. 247 (2004), 241277, doi:10.1007/s00209-003-0580-5.Google Scholar
Ichino, A., On the Siegel–Weil formula for unitary groups , Math. Z. 255 (2007), 721729, doi:10.1007/s00209-006-0045-8.Google Scholar
Jacobowitz, R., Hermitian forms over local fields , Amer. J. Math. 84 (1962), 441465.Google Scholar
Krämer, N., Local models for ramified unitary groups , Abh. Math. Semin. Univ. Hambg. 73 (2003), 6780, doi:10.1007/BF02941269.Google Scholar
Kudla, S. S., Central derivatives of Eisenstein series and height pairings , Ann. of Math. (2) 146 (1997), 545646, doi:10.2307/2952456.Google Scholar
Kudla, S. S., Integrals of Borcherds forms , Compos. Math. 137 (2003), 293349, doi:10.1023/A:1024127100993.Google Scholar
Kudla, S. S., Special cycles and derivatives of Eisenstein series , in Heegner points and Rankin L-series, Mathematical Sciences Research Institute Publications, vol. 49 (Cambridge University Press, Cambridge, 2004), 243270, doi:10.1017/CBO9780511756375.009.Google Scholar
Kudla, S. S. and Millson, J. J., Intersection numbers of cycles on locally symmetric spaces and Fourier coefficients of holomorphic modular forms in several complex variables , Publ. Math. Inst. Hautes Études Sci. 71 (1990), 121172, http://www.numdam.org/item?id=PMIHES_1990__71__121_0.Google Scholar
Kudla, S. S. and Rapoport, M., Special cycles on unitary Shimura varieties II: Global theory , J. Reine Angew. Math. 697 (2014), 91157, doi:10.1515/crelle-2012-0121.Google Scholar
Kudla, S. S., Rapoport, M. and Yang, T., Modular forms and special cycles on Shimura curves, Annals of Mathematics Studies, vol. 161 (Princeton University Press, Princeton, NJ, 2006).Google Scholar
Schofer, J., Borcherds forms and generalizations of singular moduli , J. Reine Angew. Math. 629 (2009), 136, doi:10.1515/CRELLE.2009.025.Google Scholar
Strömberg, F., Weil representations associated with finite quadratic modules , Math. Z. (2013), 119, doi:10.1007/s00209-013-1145-x.Google Scholar
Weil, A., Sur certains groupes d’opérateurs unitaires , Acta Math. 111 (1964), 143211.Google Scholar
Zwegers, S. P., Mock 𝜃-functions and real analytic modular forms (American Mathematical Society, Providence, RI, 2001), 269277.Google Scholar