Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T03:36:36.907Z Has data issue: false hasContentIssue false

On the fourth moment of Hecke–Maass forms and the random wave conjecture

Published online by Cambridge University Press:  02 May 2017

Jack Buttcane
Affiliation:
Mathematics Department, 244 Mathematics Building, University at Buffalo, Buffalo, NY 14260, USA email buttcane@buffalo.edu
Rizwanur Khan
Affiliation:
Science Program, Texas A&M University at Qatar, PO Box 23874, Doha, Qatar email rizwanur.khan@qatar.tamu.edu

Abstract

Conditionally on the generalized Lindelöf hypothesis, we obtain an asymptotic for the fourth moment of Hecke–Maass cusp forms of large Laplacian eigenvalue for the full modular group. This lends support to the random wave conjecture.

Type
Research Article
Copyright
© The Authors 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blomer, V., Subconvexity for twisted L-functions on GL(3) , Amer. J. Math. 134 (2012), 13851421.Google Scholar
Blomer, V., Harcos, G. and Michel, P., Bounds for modular L-functions in the level aspect , Ann. Sci. Éc. Norm. Supér. (4) 40 (2007), 697740.CrossRefGoogle Scholar
Blomer, V., Khan, R. and Young, M., Distribution of mass of holomorphic cusp forms , Duke Math. J. 162 (2013), 26092644.Google Scholar
Blomer, V. and Milićević, D., The second moment of twisted modular L-functions , Geom. Funct. Anal. 25 (2015), 453516.CrossRefGoogle Scholar
Buttcane, J. and Khan, R., A mean value of a triple product of L-functions , Math. Z. 285 (2017), 565591.Google Scholar
Goldfeld, D., Automorphic forms and L-functions for the group GL(n, R), Cambridge Studies in Advanced Mathematics, vol. 99 (Cambridge University Press, Cambridge, 2006); with an appendix by Kevin A. Broughan.Google Scholar
Goldfeld, D. and Li, X., Voronoi formulas on GL(n) , Int. Math. Res. Not. IMRN 2006 (2006), Art. ID 86295, 25.Google Scholar
Gradshteyn, I. S. and Ryzhik, I. M., Table of integrals, series, and products, sixth edition (Academic Press Inc., San Diego, CA, 2000); translated from the Russian, edited and with a preface by Alan Jeffrey and Daniel Zwillinger.Google Scholar
Hejhal, D. A. and Rackner, B. N., On the topography of Maass waveforms for PSL(2, Z) , Exp. Math. 1 (1992), 275305.Google Scholar
Hejhal, D. A. and Strömbergsson, A., On quantum chaos and Maass waveforms of CM-type , Found. Phys. 31 (2001), 519533; invited papers dedicated to Martin C. Gutzwiller, Part IV.Google Scholar
Hoffstein, J. and Lockhart, P., Coefficients of Maass forms and the Siegel zero , Ann. of Math. (2) 140 (1994), 161181; with an appendix by Dorian Goldfeld, Hoffstein and Daniel Lieman.Google Scholar
Iwaniec, H., The spectral growth of automorphic L-functions , J. Reine Angew. Math. 428 (1992), 139159.Google Scholar
Iwaniec, H., Topics in classical automorphic forms, Graduate Studies in Mathematics, vol. 17 (American Mathematical Society, Providence, RI, 1997).Google Scholar
Iwaniec, H. and Kowalski, E., Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53 (American Mathematical Society, Providence, RI, 2004).Google Scholar
Iwaniec, H., Luo, W. and Sarnak, P., Low lying zeros of families of L-functions , Publ. Math. Inst. Hautes Études Sci. 91 (2000), 55131.Google Scholar
Kim, H. H., Functoriality for the exterior square of GL 4 and the symmetric fourth of GL 2 , J. Amer. Math. Soc. 16 (2003), 139183; with Appendix 1 by Dinakar Ramakrishnan and Appendix 2 by Kim and Peter Sarnak.CrossRefGoogle Scholar
Lapid, E. and Rallis, S., On the nonnegativity of L ([[()[]mml:mfrac[]()]][[()[]mml:mrow []()]]1[[()[]/mml:mrow[]()]] [[()[]mml:mrow []()]]2[[()[]/mml:mrow[]()]][[()[]/mml:mfrac[]()]], 𝜋) for SO2n+1 , Ann. of Math. (2) 157 (2003), 891917.Google Scholar
Lapid, E. M., On the nonnegativity of Rankin–Selberg L-functions at the center of symmetry , Int. Math. Res. Not. IMRN 2003 (2003), 6575.CrossRefGoogle Scholar
Li, X., The central value of the Rankin–Selberg L-functions , Geom. Funct. Anal. 18 (2009), 16601695.CrossRefGoogle Scholar
Luo, W., L 4 -norms of the dihedral Maass forms , Int. Math. Res. Not. IMRN 2014 (2014), 22942304.Google Scholar
Miller, S. D. and Schmid, W., Automorphic distributions, L-functions, and Voronoi summation for GL(3) , Ann. of Math. (2) 164 (2006), 423488.Google Scholar
Motohashi, Y., Spectral theory of the Riemann zeta-function, Cambridge Tracts in Mathematics, vol. 127 (Cambridge University Press, Cambridge, 1997).Google Scholar
Rouymi, D., Formules de trace et non-annulation de fonctions L automorphes au niveau p𝜈 , Acta Arith. 147 (2011), 132.Google Scholar
Sarnak, P., Spectra of hyperbolic surfaces , Bull. Amer. Math. Soc. (N.S.) 40 (2003), 441478.Google Scholar
Sarnak, P. and Tsimerman, J., On Linnik and Selberg’s conjecture about sums of Kloosterman sums , in Algebra, arithmetic, and geometry: in honor of Yu. I. Manin, Vol. II, Progress in Mathematics, vol. 270 (Birkhäuser, Boston, MA, 2009), 619635.Google Scholar
Spinu, F., The $L^{4}$ norm of the Eisenstein series, PhD thesis, Princeton University (ProQuest LLC, Ann Arbor, MI, 2003).Google Scholar
Watson, T. C., Rankin triple products and quantum chaos, PhD thesis, Princeton University (ProQuest LLC, Ann Arbor, MI, 2002).Google Scholar
Yoshida, E., Remark on the Kuznetsov trace formula , in Analytic number theory (Kyoto, 1996), London Mathematical Society Lecture Note Series, vol. 247 (Cambridge University Press, Cambridge, 1997), 377382.Google Scholar